【题目】如图,直线y= 与y轴交于点A,与直线y=﹣ 交于点B,以AB为边向右作菱形ABCD,点C恰与原点O重合,抛物线y=(x﹣h)2+k的顶点在直线y=﹣ 上移动.若抛物线与菱形的边AB、BC都有公共点,则h的取值范围是( )
A.﹣2
B.﹣2≤h≤1
C.﹣1
D.﹣1
【答案】A
【解析】解:∵将y= 与y=﹣ 联立得: ,解得: .
∴点B的坐标为(﹣2,1).
由抛物线的解析式可知抛物线的顶点坐标为(h,k).
∵将x=h,y=k,代入得y=﹣ 得:﹣ h=k,解得k=﹣ ,
∴抛物线的解析式为y=(x﹣h)2﹣ h.
如图1所示:当抛物线经过点C时.
将C(0,0)代入y=(x﹣h)2﹣ h得:h2﹣ h=0,解得:h1=0(舍去),h2= .
如图2所示:当抛物线经过点B时.
将B(﹣2,1)代入y=(x﹣h)2﹣ h得:(﹣2﹣h)2﹣ h=1,整理得:2h2+7h+6=0,解得:h1=﹣2,h2=﹣ (舍去).
综上所述,h的范围是﹣2≤h≤ .
所以答案是:A.
科目:初中数学 来源: 题型:
【题目】如图△ABC中,分别延长边AB,BC,CA,使得BD=AB,CE=2BC,AF=3CA,若△ABC的面积为1,则△DEF的面积为( )
A. 12B. 14C. 16D. 18
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知矩形 的边长 .某一时刻,动点 从 点出发沿 方向以 的速度向 点匀速运动;同时,动点 从 点出发沿 方向以 的速度向 点匀速运动,问:
(1)经过多少时间, 的面积等于矩形 面积的 ?
(2)是否存在时刻t,使以A,M,N为顶点的三角形与 相似?若存在,求t的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】设a,b是任意两个不等实数,我们规定:满足不等式a≤x≤b的实数x的所有取值的全体叫做闭区间,表示为[a,b].对于一个函数,如果它的自变量x与函数值y满足:当m≤x≤n时,有m≤y≤n,我们就称此函数是闭区间[m.n]上的“闭函数”.如函数 ,当x=1时,y=3;当x=3时,y=1,即当 时,有 ,所以说函数 是闭区间[1,3]上的“闭函数”.
(1)反比例函数y= 是闭区间[1,2016]上的“闭函数”吗?请判断并说明理由;
(2)若二次函数y= 是闭区间[1,2]上的“闭函数”,求k的值;
(3)若一次函数y=kx+b(k≠0)是闭区间[m,n]上的“闭函数”,求此函数的表达式(用含m,n的代数式表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】周末,小明乘坐家门口的公交车到和平公园游玩,他先乘坐公交车0.8小时后达到书城,逗留一段时间后继续坐公交车到和平公园,小明出发一段时间后,小明的妈妈不放心,于是驾车沿相同的路线前往和平公园,如图是他们离家的路程与离家时间的关系图,请根据图回答下列问题:
(1)小明家到和平公园的路程为 ,他在书城逗留的时间为 ;
(2)图中点表示的意义是 ;
(3)求小明的妈妈驾车的平均速度(平均速度=).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,AE平分∠BAF,交⊙O于点E,过点E作直线ED⊥AF,交AF的延长线于点D,交AB的延长线于点C.
(1)求证:CD是⊙O的切线;
(2)若tanC= ,⊙O的半径为2,求DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,ABC是等边三角形,点D是线段AC上的一动点,E在BC的延长线上,且BD=DE.
(1)如图,若点D为线段AC的中点,求证:AD=CE;
(2)如图,若点D为线段AC上任意一点,求证:AD=CE.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com