【题目】如图,平台AB高为12m,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,求楼房CD的高度(结果保留整数,参考值: ≈1.732)
【答案】解:作BE⊥CD于E.
∵∠DBE=45°,∠CBE=30°,∠BCE=60°,
又∵AB⊥AC,CD⊥AC,
∴四边形ABEC是矩形,
∴CE=AB=12,
在Rt△CBE中,tan∠BCE= ,
∴BE=CEtan60°=12 ,
在Rt△BDE中,∵∠DBE=45°,
∴DE=BE=12 ,
∴CD=CE+DE=12+12 =12(1+ )≈33m,
答:楼房CD的高度约为33m.
【解析】作BE⊥CD于E.在Rt△CBE中,tan∠BCE= ,可得BE=CEtan60°=12 ,在Rt△BDE中,由∠DBE=45°,可得DE=BE=12 ,根据CD=CE+DE计算即可.
【考点精析】利用关于仰角俯角问题对题目进行判断即可得到答案,需要熟知仰角:视线在水平线上方的角;俯角:视线在水平线下方的角.
科目:初中数学 来源: 题型:
【题目】小宇想测量位于池塘两端的A、B两点的距离.他沿着与直线AB平行的道路EF行走,当行走到点C处,测得∠ACF=45°,再向前行走100米到点D处,测得∠BDF=60°.若直线AB与EF之间的距离为60米,求A、B两点的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法中正确的是( )
A. 点A和点B位于直线l的两侧,如果A、B到l的距离相等,那么它们关于直线l对称
B. 两个全等的图形一定关于某条直线对称
C. 如果三角形中有一边的长度是另一边长度的一半,则这条边所对的角是30°
D. 等腰三角形一定是轴对称图形,对称轴有1条或者3条
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,CN是等边△的外角内部的一条射线,点A关于CN的对称点为D,连接AD,BD,CD,其中AD,BD分别交射线CN于点E,P.
(1)依题意补全图形;
(2)若,求的大小(用含的式子表示);
(3)用等式表示线段, 与之间的数量关系,并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】观察下列计算过程,发现规律,利用规律猜想并计算:
1+2==3;1+2+3==6,1+2+3+4==10;1+2+3+4+5==15;…
(1)猜想:1+2+3+4+…+n= .
(2)利用上述规律计算:1+2+3+4+…+200;
(3)尝试计算:3+6+9+12+…3n的结果.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O的直径,AC、DC为弦,∠ACD=60°,P为AB延长线上的点,∠APD=30°.
(1)求证:DP是⊙O的切线;
(2)若⊙O的半径为3cm,求图中阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了提高学生书写汉字的能力.增强保护汉字的意识,我区举办了“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:
组别 | 成绩x分 | 频数(人数) |
第1组 | 25≤x<30 | 4 |
第2组 | 30≤x<35 | 6 |
第3组 | 35≤x<40 | 14 |
第4组 | 40≤x<45 | a |
第5组 | 45≤x<50 | 10 |
请结合图表完成下列各题:
(1)求表中a的值;
(2)请把频数分布直方图补充完整;
(3)若测试成绩不低于40分为优秀,则本次测试的优秀率是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列解答过程:(1)如图甲,AB∥CD,探索∠P与∠A,∠C之间的关系.
(2)如图乙和图丙,AB∥CD,请根据上述方法分别探索两图中∠P与∠A,∠C之间的关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读以下两小题后作出相应的解答:
(1)“同位角相等,两直线平行”,“两直线平行,同位角相等”,这两个命题的题设和结论在命题中的位置恰好对凋,我们把其中一命题叫做另一个命题的逆命题,请你写出命题“角平分线上的点到角两边的距离相等“的逆命题,并指出逆命题的题设和结论;
(2)根据以下语句作出图形,并写出该命题的文字叙述.
已知:过直线AB上一点O任作射线OC,OM、ON分别平分∠AOC、∠BOC,则OM⊥ON.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com