精英家教网 > 初中数学 > 题目详情
17.某服装店专营一批进价为每件200元的品牌衬衫,每件售价为300元,每天可售出40件,若每件降价10元,则每天多售出10件,请根据以上信息解答下列问题:
(1)为了使销售该品牌衬衫每天获利4500元,并且让利于顾客,每件售价应为多少元;
(2)该服装店将该品牌的衬衫销售完,在补货时厂家只剩100件库存,经协商每件降价a元,全部拿回.按(1)中的价格售出80件后,剩余的按八折销售,售完这100件衬衫获利50%,求a的值.

分析 (1)表示出每件商品的利润和销量进而得出等式求出答案;
(2)分别表示出100件商品的利润进而得出等式求出答案.

解答 解:(1)设该品牌衬衫每件售价为x元,根据题意可得:
(x-200)(40+$\frac{300-x}{10}$×10)=4500,
解得:x1=250,x2=290,
因为要让利于顾客,所以应采取降价销售且降得越多越好,
故x=250,
答:该品牌衬衫每件售价为250元;

(2)根据题意可得:250×80+250×80%×(100-80)=(200-a)×100(1+50%),
解得:a=40,
答:a的值为40.

点评 此题主要考查了一元二次方程的应用,正确表示出商品总利润是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

7.(1)化简:(a-b)2-a(a-2b);
(2)化简求值:$\frac{2x}{{x}^{2}-1}$-$\frac{1}{x-1}$,其中x=$\sqrt{3}$-1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.在平行四边形ABCD中,点E,F分别在边AD,AB上(均不与顶点重合),且∠BCD=120°,∠ECF=60°.
(1)如图1,若AB=AD,求证:△AEC≌△BFC;
(2)如图2,若AB=2AD,过点C作CM⊥AB于点M,求证:①AC⊥BC;②AE=2FM;
(3)如图3,若AB=3AD,试探究线段CE与线段CF的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,直线AB与CD相交于点O,OP是∠BOC的平分线,OE⊥AB,OF⊥CD
(1)图中除直角外,写出三对相等的角;
(2)已知∠EOC=50°,求∠POF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,将四边形ABCD的对角线BD向两个方向延长,分别至点E和点F,且使BE=DF,若AE∥CF且AE=CF.
(1)求证:△ABE≌△CDF;
(2)若AC⊥EF,求证:四边形ABCD是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.某学校欲举办“校园运动挑战赛”,为此该校在三个年级中随机抽取一个班级进行了一次“你最喜欢的挑战项目”的问卷调查,每名学生都只选了一项.已知被调查的三个年级的学生人数均为50人,根据收集到的数据,绘制成如下统计图表(不完整):
项目跳绳踢毽子乒乓球羽毛球其他
人数(人)141086

根据统计图表中的信息,解答下列问题:
(1)在本次随机调查中,七年级抽查班级中喜欢“跳绳”项目的学生有12人,九年级抽查班级中喜欢“乒乓球”项目的学生人数占本班人数的百分比为18%;
(2)请将条形统计图补充完整;
(3)若该校共有3000名学生(三个年级的学生人数都相等),请估计该校喜欢“羽毛球”项目的学生总人数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.先化简,再求值:$\frac{{a}^{2}-2a+1}{a-2}$÷(a+2+$\frac{3}{a-2}$),其中-$\sqrt{3}$≤a≤$\sqrt{5}$,且a为整数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,△ABC是直角三角形,∠C=90°.
(1)请作出△ABC的内切圆(⊙O尺规作图,不写作法,保留作图痕迹).
(2)设(1)中作出的⊙O与边AB、BC、CA分别相切于点D、E、F,BC=8,AC=6,求⊙O的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.已知一组数据a1,a2,a3,a4的平均数是2017,则另一组数据a1+3,a2-2,a3-2,a4+5的平均数是2018.

查看答案和解析>>

同步练习册答案