精英家教网 > 初中数学 > 题目详情
16.已知:x3+px+q能被(x-a)2整除,求证:4p3+27q2=0.

分析 根据题意列出关系式,利用多项式相等的条件表示出p与q,代入验证即可.

解答 证明:∵x3+px+q能被(x-a)2整除,
∴x3+px+q=(x+b)(x-a)2=x3+(b-2a)x2+(a2-2ab)x+a2b,
∴b-2a=0,p=a2-2ab,q=a2b,
把b=2a代入得:p=-3a2,q=2a3
则4p3+27q2=-108a6+108a6=0.

点评 此题考查了整式的除法,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

6.已知,如图,D是△ABC的边AB上一点,DF交AC于点E,DE=FE,FC∥AB,
求证:AD=CF.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.已知函数y=$\frac{k}{2}$xk-2是关于x的二次函数
(1)求满足条件的k的值;
(2)k为何值时,函数有最大值?最大值为多少?当x为何值时,y随x的增大而减小?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.已知x+$\sqrt{10}$=2,求$\frac{1}{2}$x2-2x-$\frac{7}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.比较x2-4x+3与x2-6x+9的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.求值:2(2a+3b)2-3(2a-3b)+8(2a+3b)2-7(2a-3b),其中a=$\frac{1}{2}$,b=-$\frac{2}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.利用我们学过的知识,可以导出下面这个形式优美的等式:a2+b2+c2-ab-bc-ac=$\frac{1}{2}$[(a-b)2+(b-c)2+(c-a)2],该等式从左到右的变形,不仅保持了结构的对称性,还体现了数学的和谐、简洁美.
(1)请你检验这个等式的正确性;
(2)若a=2012,b=2013,c=2014,你能很快求出a2+b2+c2-ab-bc-ac的值吗?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.观察下列各式:
(x-1)(x+1)=x2-1;
(x-1)(x2+x+1)=x3-1;
(x-1)(x3+x2+x+1)=x4-1;

(1)根据上面各式的规律可得:(x-1)(xn+xn-1+…+x+1)=xn+1-1(其中n是正整数)
(2)运用以上规律:计算:1+2+22+23+…+210的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.某地拟召开一场安全级别较高的会议,预估将有4000至7000名人员参加会议,为了确保会议的安全,会议组委会决定对每位入场人员进行安全检查,现了解到安检设备有门式安检仪和手持安检仪两种:门式安检仪每台3000元,需安检员2名,每分钟可通过10人;手持安检仪每只500元,需安检员1名,每分钟可通过2人,该会议中心共有6个不同的入口,每个入口都有5条通道可供使用,每条通道只可安放一台门式安检仪或一只手持安检仪,每位安检员的劳务费用均为200元.(安检总费用包括安检设备费用和安检员的劳务费用)
现知道会议当日人员从上午9:00开始入场,到上午9:30结束入场,6个入口都采用相同的安检方案,所有人员须提前到达并根据会议通知从相应入口进入
(1)如果每个入口处,只有2个通道安放门式安检仪,而其余3个通道均为手持安检仪,在这个安检方案下,请问:在规定时间内可通过多少名人员?安检所需要的总费用为多少元?
(2)请你设计一个安检方案,确保安检工作的正常进行,同时使得安检所需要的总费用尽可能少.

查看答案和解析>>

同步练习册答案