精英家教网 > 初中数学 > 题目详情
如图,△ABC为直角三角形,∠C=90°,BC=2cm,∠A=30°,四边形DEFG为矩形,,EF=6cm,且点C、B、E、F在同一条直线上,点B与点E重合.Rt△ABC以每秒1cm的速度沿矩形DEFG的边EF向右平移,当点C与点F重合时停止.设Rt△ABC与矩形DEFG的重叠部分的面积为ycm2,运动时间xs.能反映ycm2与xs之间函数关系的大致图象是( )

A.
B.
C.
D.
【答案】分析:由勾股定理求出AB、AC的长,进一步求出△ABC的面积,根据移动特点有三种情况(1)(2)(3),分别求出每种情况y与x的关系式,利用关系式的特点(是一次函数还是二次函数)就能选出答案.
解答:解:已知∠C=90°,BC=2cm,∠A=30°,
∴AB=4,
由勾股定理得:AC=2
∵四边形DEFG为矩形,∠C=90,
∴DE=GF=2,∠C=∠DEF=90°,
∴AC∥DE,
此题有三种情况:(1)当0<x<2时,AB交DE于H,
如图

∵DE∥AC,
=
=
解得:EH=x,
所以y=x•x=x2
∵x y之间是二次函数,
所以所选答案C错误,答案D错误,

∵a=>0,开口向上;
(2)当2≤x≤6时,如图,

此时y=×2×2=2
(3)当6<x≤8时,如图,设△ABC的面积是s1,△FNB的面积是s2

BF=x-6,与(1)类同,同法可求FN=X-6
∴y=s1-s2
=×2×2-×(x-6)×(X-6),
=-x2+6x-16
∵-<0,
∴开口向下,
所以答案A正确,答案B错误,
故选A.
点评:本题主要考查了一次函数,二次函数的性质三角形的面积公式等知识点,解此题的关键是能根据移动规律把问题分成三种情况,并能求出每种情况的y与x的关系式.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

10、已知如图,△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,△ABC为直角三角形,∠C=90°,BC=2cm,∠A=30°,四边形DEFG为矩形,DE=2
3
cm
,EF=6cm,且点C、B、E、F在同一条直线上,点B与点E重合.Rt△ABC以每秒1cm的速度沿矩形DEFG的边EF向右平移,当点C与点F重合时停止.设Rt△ABC与矩形DEFG的重叠部分的面积为ycm2,运动时间xs.能反映ycm2与xs之间函数关系的大致图象是(  )
A、精英家教网
B、精英家教网
C、精英家教网
D、精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC为直角三角形,∠C=90°,BC=2cm,∠A=30°;四边形DEFG为矩形,DE=2
3
cm,EF=6cm,且点C、B、E、F在同一条直线上,点B与点E重合.
(1)求AC的长度;
(2)将Rt△ABC以每秒1 cm的速度沿矩形DEFG的边EF向右平移,当点C与点F重合时停止移动,设Rt△ABC与矩形DEFG重叠部分的面积为y,请求出重叠面积y(cm2)与移动时间x(s)的函数关系式(时间不包括起始与终止时刻);
(3)在(2)的基础上,当Rt△ABC移动至重叠部分的面积y=
3
2
3
时,将Rt△ABC沿边AB向上翻折,精英家教网并使点C与点C’重合,请求出翻折后Rt△ABC’与矩形DEFG重叠部分的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知如图:△ABC为直角三角形,∠ACB=90°,AC=BC,点A、C在x轴上,点B坐标为(3,m)(m>0),线段AB与y轴相交于点D,以P(1,0)为顶点的抛物线过点B、D.设点Q为抛物线上点P至点B之间的一动点,连接PQ并延长交BC于点E,连接BQ并延长交AC于点F,则FC(AC+EC)=
8
8

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC为直角三角形,AC=3cm,BC=4cm,AB=5cm,将△ABC沿CB方向平移3cm,则边AB所经过的平面面积为
9cm2
9cm2

查看答案和解析>>

同步练习册答案