精英家教网 > 初中数学 > 题目详情
ABCD中,P是AB边上的任意一点,过P点作PE⊥AB,交AD于E,连结CE,CP.已知∠A=60°;

(1)若BC=8,AB=6,当AP的长为多少时,△CPE的面积最大,并求出面积的最大值.
(2)试探究当△CPE≌△CPB时,ABCD的两边AB与BC应满足什么关系?
(1)AP的长为5时,△CPE的面积最大,最大面积是
(2)当△CPE≌△CPB时,BC与AB满足的关系为BC=AB。

分析:(1)延长PE交CD的延长线于F,设AP=x,△CPE的面积为y,由四边形ABCD为平行四边形,利用平行四边形的对边相等得到AB=DC,AD=BC,在直角三角形APE中,根据∠A的度数求出∠PEA的度数为30度,利用直角三角形中30度所对的直角边等于斜边的一半表示出AE与PE,由AD﹣AE表示出DE,再利用对顶角相等得到∠DEF为30度,利用30度所对的直角边等于斜边的一半表示出DF,由两直线平行内错角相等得到∠F为直角,表示出三角形CPE的面积,得出y与x的函数解析式,利用二次函数的性质即可得到三角形CPE面积的最大值,以及此时AP的长。
(2)由△CPE≌△CPB,利用全等三角形的对应边相等,对应角相等得到BC=CE,∠B=∠PEC=120°,进而得出∠ECD=∠CED,利用等角对等边得到ED=CD,即三角形ECD为等腰三角形,过D作DM垂直于CE,∠ECD=30°,利用锐角三角形函数定义表示出cos30°,得出CM与CD的关系,进而得出CE与CD的关系,即可确定出AB与BC满足的关系。
解:(1)延长PE交CD的延长线于F,

设AP=x,△CPE的面积为y,
∵四边形ABCD为平行四边形,
∴AB=DC=6,AD=BC=8,。
∵Rt△APE中,∠A=60°,
∴∠PEA=30°。
∴AE=2x,PE=
在Rt△DEF中,∠DEF=∠PEA=30°,DE=AD﹣AE=8﹣2x,∴DF=DE=4﹣x。
∵AB∥CD,PF⊥AB,∴PF⊥CD。
∴SCPE=PE•CF。

,∴当x=5时,y有最大值
∴AP的长为5时,△CPE的面积最大,最大面积是
(2)当△CPE≌△CPB时,有BC=CE,∠B=∠PEC=120°,
∴∠CED=180°﹣∠AEP﹣∠PEC=30°。
∵∠ADC=120°,∴∠ECD=∠CED=180°﹣120°﹣30°=30°。
∴DE=CD,即△EDC是等腰三角形。
过D作DM⊥CE于M,则CM=CE。
在Rt△CMD中,∠ECD=30°,∴
∴CM= CD。∴CE=CD。
∵BC=CE,AB=CD,∴BC=AB。
∴当△CPE≌△CPB时,BC与AB满足的关系为BC=AB。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

(2013年四川广安6分)如图,在平行四边形ABCD中,AE∥CF,求证:△ABE≌△CDF.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,顺次连结四边形ABCD四边的中点E、F、G、H,则四边形EFGH的形状一定是    

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平行四边形ABCD中,已知EF :FC =" 1" :4.

(1)求ED :BC的值;
(2)若AD=8,求AE的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,矩形ABCD的两条对角线相交于点O,∠AOD=60°,AD=2,则AC的长是
A.2B.4C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在四边形中,,已知四边形的周长为32,求的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在矩形ABCD中,将点A翻折到对角线BD上的点M处,折痕BE交AD于点E.将点C翻折到对角线BD上的点N处,折痕DF交BC于点F.

(1)求证:四边形BFDE为平行四边形;
(2)若四边形BFDE为菱形,且AB=2,求BC的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图a,ABCD是长方形纸带,∠DEF=23°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是_________°.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

设边长为3的正方形的对角线长为a,下列关于a的四种说法:① a是无理数;② a可以用数轴上的一个点来表示;③ 3<a<4;④ a是18的算术平方根。其中,所有正确说法的序号是
A.①④B.②③C.①②④D.①③④

查看答案和解析>>

同步练习册答案