精英家教网 > 初中数学 > 题目详情
如图,E是正方形ABCD的边AB上的动点, EF⊥DE交BC于点F.若正方形的边长为4, AE=,BF=.则 的函数关系式为          

试题分析:根据正方形的性质可得∠DAE=∠EBF=90°,AD=AB,由EF⊥DE可得∠ADE=∠FEB,即可证得△ADE∽△BEF,根据相似三角形的性质求解即可.
∵ABCD是正方形,
∴∠DAE=∠EBF=90°,AD=AB,
∴∠ADE+∠DEA=90°,
∵EF⊥DE,
∴∠AED+∠FEB=90°,
∴∠ADE=∠FEB,
∴△ADE∽△BEF

∵AD=AB=4,
∴BE=4-x,
,解得
点评:相似三角形的判定与性质是初中数学的重点,贯穿于整个初中数学的学习,是中考常见题,一般难度不大,需熟练掌握.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

如图,把抛物线y=x2沿直线y=x平移个单位后,其顶点在直线上的A处,则平移后的抛物线解析式是(    )
A.y=(x+1)2-1B.y=(x+1)2+1
C.y=(x-1)2+1D.y=(x-1)2-1

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,直线与抛物线交于AB两点,点Ax轴上,点B的横坐标为-8.

(1)求该抛物线的解析式;
(2)点P是直线AB上方的抛物线上一动点(不与点AB重合),过点Px轴的垂线,垂足为C,交直线AB于点D,作PEAB于点E
①设△PDE的周长为l,点P的横坐标为x,求l关于x的函数关系式,并求出l的最大值;
②连接PA,以PA为边作如图所示一侧的正方形APFG.随着点P的运动,正方形的大小、位置也随之改变.当顶点FG恰好落在y轴上时,求出对应的点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

九年级数学课本上,用“描点法”画二次函数的图像时,列出了如下的表格:
X
 
0
1
2
3
4
 

 
3
0
–1
0
3
 
那么该二次函数在= 5时,y =      

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中0A=2,0B=4,将△OAB绕点O顺时针旋转90°至△OCD,若已知抛物线过点A、D、B.
  
(1)求此抛物线的解析式;
(2)连结DB,将△COD沿射线DB平移,速度为每秒个单位.
①经过多少秒O点平移后的O′点落在线段AB上?
②设DO的中点为M,在平移的过程中,点M、A、B能否构成等腰三角形?若能,求出构成等腰三角形时M点的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列哪条抛物线向左平移两个单位,再向上平移一个单位,可得到抛物线y=x2(   )
A.y=(x-2) 2+1B.y=(x-2) 2-1
C.y=(x+2) 2+1D.y=(x+2) 2-1

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知点A(x1,y1),B(x2,y2),在抛物线上,且x1<x2<-2,则y1    y2(填“>”或“=”或“<”)。

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知点在二次函数的图象上,若
的大小关系为:  .

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

二次函数的图象如图所示,试确定的符号;             0,
             0.(填不等号)

查看答案和解析>>

同步练习册答案