分析 根据勾股定理可以求得直角三角形的斜边长,构成等腰三角形,则根据原直角三角形斜边长和直角边长可以确定另一个直角三角形的一条直角边长,根据这个等量关系可以解题.
解答 解:如图所示:
∵在Rt△ABC中,∠C=90°,AC=4,BC=3,
∴AB=$\sqrt{{AC}^{2}+{BC}^{2}}$=$\sqrt{{4}^{2}+{3}^{2}}$=5.
当如图1所示时,AD=2AC=8;
当如图2所示时,AD=1+4=5;
当如图3所示时,AD=$\sqrt{{2}^{2}+{4}^{2}}$=2$\sqrt{5}$;
当如图4所示时,AD=AB=5.
故答案为:5,8或2$\sqrt{5}$.
点评 本题考查了勾股定理在直角三角形中的灵活运用,考查了等腰三角形腰长相等的性质,本题中根据斜边分别求新直角三角形的直角边长是解题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 2 | B. | 3 | C. | $\frac{5}{2}$ | D. | 4 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 两条对角线互相垂直相等 | B. | 一组对边相等,一组对角相等 | ||
C. | 一组对边平行,另一组对边相等 | D. | 一组对边平行,一组对角相等 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com