精英家教网 > 初中数学 > 题目详情
已知:直线l1、l2分别与x轴交于点A、C,且都经过y轴上一点B,又l1的解析式是y=-x-3,l2与x轴正半轴的夹角是60°.
求:(1)直线l2的函数表达式;   
 (2)△ABC的面积.
分析:(1)根据直线y=-x-3和x,y都有交点,求出A,B两点的坐标,根据直角三角函数,可得OC=
3
,得出C点坐标,根据B,C两点的坐标,很容易就可得到l2的函数表达式.
(2)根据A,B,C三点的坐标,可以得到高OB,底边AC的长度,根据三角形的面积公式可得△ABC的面积.
解答:精英家教网解:(1)∵?1:y=-x-3?2与y轴交于同一点B
∴B(0,-3)又∵?2与x轴正半轴的夹角是60°
∴∠MCx=60°即∠OCB=60°
在Rt△BOC中OB=3∴OC=B•tan30°=
3
3
=
3

∴C(
3
,0)
令?:y=kx-3∴0=
3
k-3
k=
3

∴y=
3
x-3


(2)又∵?1与x轴交于A,∴对于y=-x-3中当y=0时x=-3∴A(-3,0)
∴AC=
3
-(-3)=3+
3
S△ABC=
1
2
•(3+
3
)×3=
9+3
3
2
点评:本题要注意利用一次函数的特点,来列出方程,求出未知数,列出解析式,认真体会题意,画出图形;很容易就可看出数与图形的关系,很快即可得出结果
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知两直线l1和l2相交于点A(2,1),且直线l2经过坐标原点,若OA=OB
(1)求l1和l2的函数关系式;
(2)求△OAB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知两直线L1和L2,直线L1的解析式是y=x+4,且直线L1与x轴交于点C,直线L2经过A,精英家教网B两点,两直线相交于点A.
(1)求点C的坐标;
(2)求直线L2的解析式;
(3)求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•成华区一模)已知两直线l1、l2分别经过点A(3,0),点B(-1,0),并且当两条直线同时相交于y轴负半轴的点C时,恰好有l1⊥l2,经过点A、B、C的抛物线的对称轴与直线l2交于点K,如图所示.
(1)求抛物线的解析式;
(2)在抛物线上是否存在点P,使得以A、B、C、P为顶点的四边形的面积等于△ABC的面积的
32
倍?若存在,求出点P的坐标;若不存在,请说明理由.
(3)将直线l1按顺时针方向绕点C旋转α°(0<α<90),与抛物线的另一个交点为M.求在旋转过程中△MCK为等腰三角形时的α的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知两直线L1和L2,直线L1的解析式是y=x-4,且直线L1与x轴交于点C,直线L2经过A、B两点,两直线相交于点A.
(1)求直线L2的解析式:
(2)根据图象可得,当x
>0
>0
时,直线L1对应的函数值大于直线L2对应的函数值;
(3)△ABC的面积为
12
12

查看答案和解析>>

同步练习册答案