【题目】如图,将抛物线M1:y=ax2+4x向右平移3个单位,再向上平移3个单位,得到抛物线M2,直线y=x与M1的一个交点记为A,与M2的一个交点记为B,点A的横坐标是﹣3.
(1)求a的值及M2的表达式;
(2)点C是线段AB上的一个动点,过点C作x轴的垂线,垂足为D,在CD的右侧作正方形CDEF.
①当点C的横坐标为2时,直线y=x+n恰好经过正方形CDEF的顶点F,求此时n的值;
②在点C的运动过程中,若直线y=x+n与正方形CDEF始终没有公共点,求n的取值范围(直接写出结果).
【答案】(1)M2的顶点为(1,﹣1),M2的表达式为y=x2﹣2x;(2)①n=﹣2;②n>3,n<﹣6.
【解析】
(1)将点A横坐标代入y=x,即可得出点A纵坐标,从而得出点A的坐标,根据点A在抛物线M1:y=ax2+4x上,代入即可得出a的值,将抛物线M1化为顶点式,根据平移的原则即可得出抛物线M2;
(2)①把点C横坐标代入y=x,即可得出点C坐标,从而得出点F坐标,把点F代入y=x+n即可得出n的值;
②根据直线y=x+n与正方形CDEF始终没有公共点,直接可得出n的取值范围.
(1)∵点A在直线y=x,且点A的横坐标是﹣3,
∴A(﹣3,﹣3),
把A(﹣3,﹣3)代入y=ax2+4x,
解得a=1,
∴M1:y=x2+4x,顶点为(﹣2,﹣4),
∴M2的顶点为(1,﹣1),
∴M2的表达式为y=x2﹣2x;
(2)①由题意,C(2,2),
∴F(4,2),
∵直线y=x+n经过点F,
∴2=4+n,
解得n=﹣2;
②将y=x代入y=x2﹣2x,得
x2﹣2x=x,解得:x1=0,x2=3,
∴点B(3,3),
当点C与点A重合时,点D的坐标为(-3,0),
此时有-3+n=0,解得:n=3;
当点C与点B重合时,点E的坐标为(6,0),
此时有6+n=0,解得:n=-6,
综上可知,当直线y=x+n与正方形CDEF始终没有公共点时,n>3或n<﹣6.
科目:初中数学 来源: 题型:
【题目】为了增强学生的环保意识,某校组织了一次全校2000名学生都参加的“环保知识”考试,考题共10题.考试结束后,学校团委随机抽查部分考生的考卷,对考生答题情况进行分析统计,发现所抽查的考卷中答对题量最少为6题,并且绘制了如下两幅不完整的统计图.请根据统计图提供的信息解答以下问题:
(1)本次抽查的样本容量是 ;在扇形统计图中,m= ,n= ,“答对8题”所对应扇形的圆心角为 度;
(2)将条形统计图补充完整;
(3)请根据以上调查结果,估算出该校答对不少于8题的学生人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形矩形,连结,延长分别交、于点、,延长、交于点,一定能求出面积的条件是( )
A.矩形和矩形的面积之差B.矩形和矩形的面积之差
C.矩形和矩形的面积之差D.矩形和矩形的面积之差
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知AD为⊙O的直径,BC为⊙O的切线,切点为M,分别过A,D两点作BC的垂线,垂足分别为B,C,AD的延长线与BC相交于点E.
(1)求证:△ABM∽△MCD;
(2)若AD=8,AB=5,求ME的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,函数y(x>0)的图象与直线y=2x+1交于点A(1,m)
(1)求k,m的值;
(2)已知点P(0,n)(n>0),过点P作平行于x轴的直线,交直线y=2x+1于点B,交函数y(x>0)的图象于点C.横、纵坐标都是整数的点叫做整点.
①当n=1时,写出线段BC上的整点的坐标;
②若y(x>0)的图象在点A,C之间的部分与线段AB,BC所围成的区域内(包括边界)恰有6个整点,直接写出n的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,∠A=∠B=90°,AB=6,AD=1,BC=2,P为AB边上的动点,当△PAD与△PBC相似时,PA=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD为正方形,△AEF为等腰直角三角形,∠AEF=90°,连接FC,G为FC的中点,连接GD,ED.
(1)如图①,E在AB上,直接写出ED,GD的数量关系.
(2)将图①中的△AEF绕点A逆时针旋转,其它条件不变,如图②,(1)中的结论是否成立?说明理由.
(3)若AB=5,AE=1,将图①中的△AEF绕点A逆时针旋转一周,当E,F,C三点共线时,直接写出ED的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在如图的正方形网格中,每一个小正方形的边长为1格点△ABC(顶点是网格线交点的三角形)
(1)将△ABC向下平移6个单位得到△A1B1C1,画出△A1B1C1:
(2)将△A1B1C1绕点B顺时针旋转90°得到△A2B1C2画出△A2B1C2;
(3)求在平移和旋转变换过程中线段BC所扫过的图形面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知函数y=y1+y2,其中y1与x成反比例,y2与x﹣2成正比例,函数的自变量x的取值范围是x,且当x=1或x=4时,y的值均为.
请对该函数及其图象进行如下探究:
(1)解析式探究:根据给定的条件,可以确定出该函数的解析式为: .
(2)函数图象探究:
①根据解析式,补全下表:
②根据表中数据,在如图所示的平面直角坐标系中描点,并画出函数图象
(3)结合画出的函数图象,解决问题:
①当x,,8时,函数值分别为y1,y2,y3,则y1,y2,y3的大小关系为: ;(用“<”或“=”表示)
②若直线y=k与该函数图象有两个交点,则k的取值范围是 ,此时,x的取值范围是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com