精英家教网 > 初中数学 > 题目详情
3.阅读理解题:
阅读:解不等式(x+1)(x-3)>0
解:根据两数相乘,同号得正,原不等式可以转化为:$\left\{\begin{array}{l}x+1>0\\ x-3>0\end{array}\right.$或$\left\{\begin{array}{l}x+1<0\\ x-3<0\end{array}\right.$
解不等式组$\left\{\begin{array}{l}x+1>0\\ x-3>0\end{array}\right.$得:x>3
解不等式组$\left\{\begin{array}{l}x+1<0\\ x-3<0\end{array}\right.$得:x<-1
所以原不等式的解集为:x>3或x<-1
问题解决:根据以上阅读材料,解不等式(x-2)(x+3)<0.

分析 根据阅读材料可得:当x-2和x+3异号时不等式成立,据此即可转化为不等式问题求解.

解答 解:解不等式组$\left\{\begin{array}{l}{x-2>0}\\{x+3<0}\end{array}\right.$,不等式组无解;
解不等式$\left\{\begin{array}{l}{x-2<0}\\{x+3>0}\end{array}\right.$,解得-3<x<2.
总之,不等式的解集是:-3<x<2.

点评 本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解题规律是:同大取大;同小取小;大小小大中间找;大大小小找不到.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

20.$\sqrt{16}$+(2-$\sqrt{2}$)0-(-$\frac{1}{2}$)-2+|-1|

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.如果菱形的两条对角线长分别为6和8,那么这个菱形一边上的高是$\frac{24}{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.某汽车制造厂开发了一款新式电动汽车,计划一年生产安装240辆.由于抽调不出足够的熟练工人来完成新式电动汽车的安装,工厂决定招聘一项新工人,他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部分发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.
(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?
(2)如果工厂招聘n(0<n<10)名新工人,使得招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?
(3)在(2)的条件下,工厂给安装电动汽车的每名熟练工每月发2000元工资,给每名新工人每月发1200元的工资,那么工厂应招聘多少名新工人,使新工人的数量多于熟练工,同时工厂每月支出的工资总额应尽可能的少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.资江风光带绿化提质改造工程正如火如荼地进行,某施工队计划购买甲乙两种树苗共400棵对某段道路进行绿化改造,已知甲种树苗每棵200元,乙种树苗每棵300元.
(1)若购买两种树苗的总金额为90000元,求需购买甲、乙两种树苗各多少棵?
(2)若购买甲种树苗的金额不少于购买乙种树苗的金额,至少应购买甲种树苗多少棵?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.先将式子$\frac{a+1}{{a}^{2}-2a+1}$÷(1+$\frac{2}{a-1}$)化简,再选取一个合适的整数a代入求值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.不等式2x+5≥3x+2的正整数解是1,2,3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.(1)如图1,在矩形ABCD中,∠BOC=120°,AB=5,求BD的长.
(2)如图2,在菱形ABCD中,对角线AC,BD交于点O,长度分别是8和6,求菱形的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.解不等式组$\left\{\begin{array}{l}{2x+5≤3(x+2)①}\\{\frac{x-1}{2}<\frac{x}{3}②}\end{array}\right.$并把解集在数轴上表示出来.

查看答案和解析>>

同步练习册答案