精英家教网 > 初中数学 > 题目详情
23、一个正多边形的每个外角是45°.
(1)试求这个多边形的边数;(2)求这个多边形内角和的度数.
分析:(1)根据正多边形的外角和的特征即可求出多边形的边数.
(2)根据多边形的内角和计算公式求解.
解答:解:(1)方法一:设这个多边形的边数为n,
得:45°n=360°,
解得:n=8.
∴这个多边形的边数为8.
方法二:多边形每一个内角为:180°-45°=135°.
设这个多边形的边数为n,
得:(n-2)×180°=135°×n,
解得:n=8.
∴这个多边形的边数为8.
(2)这个多边形内角和的度数为(n-2)×180°=(8-2)×180°=1080°.
点评:本题考查多边形的外角和的特征,及内角和的公式,是基础题型.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

一个正多边形的每个外角是内角的
1
3
,则它的边数是(  )
A、六B、八C、十D、十二

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•怀柔区一模)一个正多边形的每个外角是36°,这个正多边形的边数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如果一个正多边形的每个外角是45°,这个多边形有
8
8
条边.

查看答案和解析>>

科目:初中数学 来源: 题型:

如果一个正多边形的每个外角是24°,那么这个多边形有
15
15
条边.

查看答案和解析>>

同步练习册答案