精英家教网 > 初中数学 > 题目详情
已知:关于x的方程mx2-14x-7=0有两个实数根x1,x2,和关于y的方程y2-2(n+1)y+n2+2n=0有两个实数根y1和y2,且-2≤y1<y2≤4
①用含m的代数式
2
x1+x2
-
6
x1x2

②用含n的代数式表示2(2y1-y22)+14,并求n的取值范围;
③当
2
x1+x2
-
6
x1x2
=2(2y1-y22)+14时,求m的取值范围.
分析:①先找出方程mx2-14x-7=0中的a,b及c的值,利用根与系数关系求出两根之和与两根之积,代入所求的代数式中化简可得;
②利用因式分解的方法求出方程y2-2(n+1)y+n2+2n=0的两解,根据两解y1与y2的范围,确定出y1与y2的值,代入所求的代数式可用n表示出来,且根据y1与y2的范围列出不等式,可得n的范围;
③由方程mx2-14x-7=0有解,可得根的判别式大于等于0,列出关于m的不等式,求出不等式的解集可得m的范围;再由第一问和第二问所表示出式子代入所求的等式中,化简可得m与n的二次函数关系式,由自变量n的范围,根据二次函数的图象可得函数值m的范围,求出两个m范围的公共部分可得满足题意m的范围.
解答:解:①∵mx2-14x-7=0,
∴a=m,b=-14,c=-7,
∴x1+x2=-
b
a
=
14
m
,x1x2=-
7
m

2
x1+x2
-
6
x1x2
=
m
7
+
6m
7
=m;

②∵方程y2-2(n+1)y+n2+2n=0有两个实数根,则△=4(n+1)2-4(n2+2n)=4>0,
分解因式得,[y-(n+2)](y-n)=0,
∴y1=n,y2=n+2,
∴2(2y1-y22)+14=2[2n-(n+2)2]+14=-2n2-4n+6,
∵-2≤y1<y2≤4,
∴-2≤n<n+2≤4,
解得:-2≤n≤2;

③∵方程mx2-14x-7=0有两个实数根,则△=196+28m≥0,
∴m≥-7,且m≠0,(i)精英家教网
∵x1+x2=
14
m
,x1x2=-
7
m

由①得y1=n-2,y2=n,
所以
2
x1+x2
-
6
x1x2
=2(2y1-y22)+14变形为
m
7
+
6m
7
=2[2n-(n+2)2]+14,
化简得,m=-2n2-4n+6.
画出m关于n的二次函数图象,如图所示:
由二次函数的图象知,
当-2≤n≤2时,-10≤m≤8,(ii)
由(i)和(ii)得:-7≤m≤8且m≠0.
点评:此题考查了根与系数的关系,解字母系数的一元二次方程,以及二次函数的图象与性质,学生在利用根与系数关系时,前提必须方程有解(b2-4ac≥0),然后可得x1+x2=-
b
a
,x1x2=
c
a
,本题的难点是第三问求m的范围,方法是根据m与n成二次函数关系,由自变量n的范围,借助二次函数的图象,利用数形结合的思想,观察图象可得函数值m在自变量n范围中所对应的最值,进而得到m的范围.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:关于x的方程mx2-3(m-1)x+2m-3=0.
(1)求证:m取任何实数量,方程总有实数根;
(2)若二次函数y1=mx2-3(m-1)x+2m-3的图象关于y轴对称;
①求二次函数y1的解析式;
②已知一次函数y2=2x-2,证明:在实数范围内,对于x的同一个值,这两个函数所对应的函数值y1≥y2均成立;
(3)在(2)条件下,若二次函数y3=ax2+bx+c的图象经过点(-5,0),且在实数范围内,对于x的同一个值,这三个函数所对应的函数值y1≥y3≥y2均成立,求二次函数y3=ax2+bx+c的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

17、已知:关于x的方程x2+2x=3-4k有两个不相等的实数根(其中k为实数)
(1)则k的取值范围是
k<1

(2)若k为非负整数,则此时方程的根是
-3或1

查看答案和解析>>

科目:初中数学 来源: 题型:

3、已知:关于x的方程x2-kx-2=0.
(1)求证:方程有两个不相等的实数根;
(2)设方程的两根为x1,x2,如果2(x1+x2)>x1x2,求k的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:关于x的方程ax2-(1-3a)x+2a-1=0,求证:a取任何实数时,方程ax2-(1-3a)x+2a-1=0总有实数根.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:关于x的方程x2+kx-12=0,求证:方程有两个不相等的实数根.

查看答案和解析>>

同步练习册答案