精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系中,直线y=
3
4
x+6
与x、y轴分别交于点A,点B,双曲线的解析式为y=
k
x


(1)求出线段AB的长;
(2)在双曲线第四象限的分支上存在一点C,使得CB⊥AB,且CB=AB,求k的值;
(3)在(1)(2)的条件下,连接AC,点D为BC的中点,过D作AC的垂线EF,交AC于E,交直线AB于F,连AD,若点P为射线AD上的一动点,连接PC、PF,当点P在射线AD上运动时,PF2-PC2的值是否发生改变?若改变,请求出其范围;若不变,请证明并求出定值.
分析:(1)首先求出图象与坐标轴交点坐标,进而得出AO,OB的长,即可利用勾股定理求出AB的长;
(2)首先作CD⊥y轴于点D,求出∠BAO=∠CBD,再利用△ABO≌△BDC,进而得出C点坐标,即可得出k的值;
(3)首先连接FC交AP于M,利用△ABD≌△CBF(SAS),得出∠BAD=∠DCM,进而利用勾股定理求出PF 2-PC2=DF2-CD2,求出即可.
解答:解:(1)由y=
3
4
x+6
与x、y轴分别交于点A,点B,
得:x=0时,y=6,y=0时,x=-8,
故A(-8,0),B(0,6),
∴AO=8,OB=6,
∴AB=
62+82
=10;

(2)作CD⊥y轴于点D,
∵∠ABO+∠BAO=90°,
∠CBO+∠ABO=90°,
∴∠BAO=∠CBD,
∵在△ABO和△BDC中,
∠BOA=∠BDC
OAB=∠CBD
AB=BC

∴△ABO≌△BDC(AAS),
∴CD=OB=6,BD=OA=8,
∴OD=BD-OB=8-6=2,
∴C(6,-2),
∴k=6×(-2)=-12;

(3)连接FC交AP于M,
∵AB=BC,∠ABC=90°,
∴∠ACB=45°,
∵EF⊥AC,
∴∠BDF=∠EDC=45°,
∵∠ABC=90°,
∴∠BFD=∠BDF=45°,
∴BD=BF,
∵在△ABD和△CBF中,
BF=BD
∠CBF=∠ABD
BC=BA

∴△ABD≌△CBF(SAS),
∴∠BAD=∠DCM,
∴∠DMC=∠ABD=90°,
∴PF 2-PC2=(FM2+MP2)-(CM2+MP2
=FM2-CM2
=(DF2-DM2)-(CD2-DM2
=DF2-CD2
∵D是BC的中点,
∴BD=CD=5,
∴BF=5,
∴DF=
52+52
=5
2

∴PF 2-PC2=(5
2
2-52=25.
点评:此题主要考查了反比例函数综合应用以及全等三角形的判定与性质和勾股定理等知识,根据已知得出△ABD≌△CBF是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案