如图,一次函数的图象与反比例函数(为常数,且)的图象都经过点.
(1)求点的坐标及反比例函数的解析式;
(2)观察图象,当时,直接写出与的大小关系.
科目:初中数学 来源: 题型:
如图1,已知二次函数的图象与x轴交于A、B两点(B在A的左侧),顶点为C, 点D(1,m)在此二次函数图象的对称轴上,过点D作y轴的垂线,交对称轴右侧的抛物线于E点.
(1)求此二次函数的解析式和点C的坐标;
(2)当点D的坐标为(1,1)时,连接BD、.求证:平分;
(3)点G在抛物线的对称轴上且位于第一象限,若以A、C、G为顶点的三角形与以G、D、E为顶点的三角形相似,求点E的横坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
列方程或方程组解应用题:
“美化城市,改善人民居住环境”是城市建设的一项重要内容.某市近年来,通过植草、栽树、修建公园等措施,使城区绿地面积不断增加,2011年底该市城区绿地总面积约为75公顷,截止到2013年底,该市城区绿地总面积约为108公顷,求从2011年底至2013年底该市城区绿地总面积的年平均增长率.
查看答案和解析>>
科目:初中数学 来源: 题型:
已知和关于直线对称(点的对称点是点),点、分别是线段和线段上的点,且点在线段的垂直平分线上,联结、,交于点.
(1)如图(1),求证:;
(2)如图(2),当时,是线段上一点,联结、、,的延长线交于点,,,试探究线段和之间的数量关系,并证明你的结论.
图(1) 图(2)
查看答案和解析>>
科目:初中数学 来源: 题型:
.以平面上一点O为直角顶点,分别画出两个直角三角形,记作△AOB和△COD,
其中∠ABO=∠DCO=30°.
(1)点E、F、M分别是AC、CD、DB的中点,连接EF 和FM.
①如图1,当点D、C分别在AO、BO的延长线上时,=_______;
②如图2,将图1中的△AOB绕点O沿顺时针方向旋转角(),
其他条件不变,判断的值是否发生变化,并对你的结论进行证明;
(2)如图3,若BO=,点N在线段OD上,且NO=3.点P是线段AB上的一个动点,在将△AOB绕点O旋转的过程中,线段PN长度的最小值为_______,最大值为_______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com