精英家教网 > 初中数学 > 题目详情
内角和与外角和相等的多边形的边数是       .
4.

试题分析:根据多边形的内角和公式(n-2)•180°与多边形的外角和定理列式进行计算即可得解:
设多边形的边数为n,根据题意得
(n-2)•180°=360°,解得n=4.
∴内角和与外角和相等的多边形的边数是4.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图,正方形纸片ABCD的边长为8,将其沿EF折叠,则图中①②③④四个三角形的周长之和为       

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC于点D,CD=2,则点D到AB的距离是   

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题


【问题提出】
学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.
【初步思考】
我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.

【深入探究】
第一种情况:当∠B是直角时,△ABC≌△DEF.
(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据       ,可以知道Rt△ABC≌Rt△DEF.
第二种情况:当∠B是钝角时,△ABC≌△DEF.
(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.
第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.
(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)
(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若       ,则△ABC≌△DEF.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在△ABC中,∠A=30°,∠B=45°,AC=2,则AB的长为           

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

一个直角三角形的两边长分别为9和40,则第三边长的平方是    

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

一副三角板如图叠放在一起,则图中∠α的度数为(  )
A.75°B.60°C.65°D.55°

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在平面直角坐标系中,已知点A(-,0),B(,0),点C在x轴上,且AC+BC=6,写出满足条件的所有点C的坐标                  

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

问题:如图1,在△ABC中,BE平分∠ABC,CE平分∠ACB.若∠A=800,则∠BEC=         ;若∠A=n0,则∠BEC=         
探究:
(1)如图2,在△ABC中,BD、BE三等分∠ABC,CD、CE三等分∠ACB.若∠A=n0,则∠BEC=         
(2)如图3,在△ABC中,BE平分∠ABC,CE平分外角∠ACM.若∠A=n0,则∠BEC=         
(3)如图4,在△ABC中,BE平分外角∠CBM,CE平分外角∠BCN.若∠A=n0,则∠BEC=        

查看答案和解析>>

同步练习册答案