精英家教网 > 初中数学 > 题目详情

【题目】如图,抛物线y=﹣(x﹣1)2+4与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,CD∥x轴交抛物线于另一点D,连结AC,DE∥AC交边CB于点E.

(1)求A,B两点的坐标;

(2)求CDE与BAC的面积之比.

【答案】(1)A(﹣1,0),B(3,0);(2)

【解析】

(1)y=0,即可求A、B的坐标;(2)CD∥AB,DE∥AC得到△CDE∽△BAC,当y=3时,即可求出D点坐标,得到CD的长,从而得到△CDE△BAC的相似比,根据相似三角形的面积比等于相似比的平方,得到答案.

(1)∵令y=0,则﹣(x﹣1)2+4=0,解得x1=﹣1,x2=3,

∴A(﹣1,0),B(3,0);

(2)∵CD∥AB,DE∥AC,

∴△CDE∽△BAC.

当y=3时,x1=0,x2=2,∴CD=2.

∵AB=4,∴=

==

故答案为:(1)A(﹣1,0),B(3,0);(2)

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AN是M的直径,NBx轴,AB交M于点C.

(1)若点A(0,6),N(0,2),ABN=30°,求点B的坐标;

(2)若D为线段NB的中点,求证:直线CD是M的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知分式,试解答下列问题:

1)分式有意义的条件是 ,分式的条件是

阅读材料:若分式的值大于,则

2)根据上面这段阅读材料,若分式,求的取值范围;

3)根据以上内容,自主探究:若分式,求的取值范围(要求:写出探究过程)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线的解析表达式为,且轴交于点.直线经过点,直线交于点

1)求点的坐标;

2)求直线的解析表达式;

3)在轴上求作一点,使的和最小,直接写出的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,已知点A、B的坐标分别为(10,0)、(0,4),C是AB的中点,过点C作y轴的垂线,垂足为D,动点P从点D出发,沿DC向点C以每秒1个单位匀速运动,过点P作x轴的垂线,垂足为E,连接BP、EC.当BP所在直线与EC所在直线垂直时,点P运动的时间为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1),是两个全等的直角三角形(直角边分别为ab,斜边为c

1)用这样的两个三角形构造成如图(2)的图形,利用这个图形,证明:a2+b2c2

2)用这样的两个三角形构造图3的图形,你能利用这个图形证明出题(1)的结论吗?如果能,请写出证明过程;

3)当a3b4时,将其中一个直角三角形放入平面直角坐标系中,使直角顶点与原点重合,两直角边ab分别与x轴、y轴重合(如图4RtAOB的位置).点C为线段OA上一点,将△ABC沿着直线BC翻折,点A恰好落在x轴上的D处.

①请写出CD两点的坐标;

②若△CMD为等腰三角形,点Mx轴上,请直接写出符合条件的所有点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,那么成立吗?为什么?下面是小丽同学进行的推理,请你将小丽同学的推理过程补充完整.

解:成立,理由如下:

(已知)

(同旁内角互补,两条直线平行)

(②

(已知),(等量代换)

(③

(④ ).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图, BD ABC 的角平分线, AE BD ,垂足为 F ,若∠ABC35°,∠ C50°,则∠CDE 的度数为(

A.35°B.40°C.45°D.50°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC中,ABACAD是∠BAC的平分线,AE是∠BAC的外角平分线,EDABAC于点G,下列结论:①BDDC;②AEBC;③AEAG;④AGDE.正确的是_____(填写序号)

查看答案和解析>>

同步练习册答案