精英家教网 > 初中数学 > 题目详情
跳绳时,绳甩到最高处时的形状是抛物线.正在甩绳的甲、乙两名同学拿绳的手间距AB为6米,到地面的距离AO和BD均为0.9米,身高为1.4米的小丽站在距点O的水平距离为1米的点F处,绳子甩到最高处时刚好通过她的头顶点E.以点o为原点建立如图所示的平面直角坐标系,设此抛物线的解析式为y=ax2+bx+0.9.
(1)求该抛物线的解析式;
(2)如果身高为157.5厘米的小明站在OD之间且离点O的距离为t米,绳子甩到最高处时超过他的头顶,请结合函数图象,求出t的取值范围.
(1)由题意得点E(1,1.4),B(6,0.9),
代入y=ax2+bx+0.9,得:
a+b+0.9=1.4
36a+6b+0.9=0.9

解得:
a=-0.1
b=0.6

故所求的抛物线的解析式为:y=-0.1x2+0.6x+0.9;

(2)157.5cm=1.575m,
当y=1.575时,-0.1x2+0.6x+0.9=1.575,
解得:x1=
3
2
,x2=
9
2

3
2
<t<
9
2
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

某公司推出一款新型手机,投放市场以来前3个月的利润情况如图所示,该图可以近似看作抛物线的一部分.请结合图象,解答以下问题:
(1)求该抛物线对应的二次函数解析式;
(2)该公司在经营此款手机过程中,第几月的利润能达到24万元?
(3)若照此经营下去,请你结合所学的知识,对公司在此款手机的经营状况(是否亏损?何时亏损?)作预测分析.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在直角坐标系xOy中,已知点P是反比例函数y=
2
3
x
(x>0)图象上一个动点,以P为圆心的圆始终与y轴相切,设切点为A.
(1)如图1,⊙P运动到与x轴相切,设切点为K,试判断四边形OKPA的形状,并说明理由.
(2)如图2,⊙P运动到与x轴相交,设交点为B,C.当四边形ABCP是菱形时:
①求出点A,B,C的坐标.
②在过A,B,C三点的抛物线上是否存在点M,使△MBP的面积是菱形ABCP面积的
1
2
?若存在,试求出所有满足条件的M点的坐标;若不存在,试说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件,经调查这种商品每降低1元,其销量可增加10件.
①求商场原来一天可获利润多少元?
②设后来该商品每件降价x元,一天可获利润y元.
1)若经营该商品一天要获利2160元,则每件商品应降价多少元?
2)当售价为多少时,获利最大并求最大值?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:0<a<b<c,实数x、y满足2x+2y=a+b+c,2xy=ac,且x<y.求证:0<x<a,b<y<c.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某果品公司为指导今年的樱桃销售,对往年的市场销售情况进行调查统计,得到如下数据:
销售价x(元/kg)25242322
销售量y(kg)2000250030003500
(1)在如图坐标系中作出各组有序数对(x,y)所对应点,连接并观察所得图象,判定y与x之间函数关系式,并求出y与x关系式.
(2)若樱桃进价为12元/kg,求销售利润P(元)与销售价x(元/kg)之间函数关系式,并求售价多少元时,利润最大?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在矩形ABCD中,AD=12,AB=8,在线段BC上任取一点P,连接DP,作射线PE⊥DP,PE与直线AB交于点E.
(1)设CP=x,BE=y,试写出y关于x的函数关系式;
(2)当点P在什么位置时,线段BE最长?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

用铝合金型材做一个形状如图1所示的矩形窗框,设窗框的一边为xm,窗户的透光面积为ym2,y与x的函数图象如图2所示.
(1)观察图象,当x为何值时,窗户透光面积最大?
(2)当窗户透光面积最大时,窗框的另一边长是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,△ABC的高AD为3,BC为4,直线EFBC,交线段AB于E,交线段AC于F,交AD于G,以EF为斜边作等腰直角三角形PEF(点P与点A在直线EF的异侧),设EF为x,△PEF与四边形BCEF重合部分的面积为y.
(1)求线段AG(用x表示);
(2)求y与x的函数关系式,并求x的取值范围.

查看答案和解析>>

同步练习册答案