精英家教网 > 初中数学 > 题目详情

如图,在直角坐标平面内,O为原点,抛物线y=ax2+bx经过点A(6,0),且顶点B(m,6)在直线y=2x上.

(1)求m的值和抛物线y=ax2+bx的解析式;

(2)如在线段OB上有一点C,满足OC=2CB,在x轴上有一点D(10,0),联结DC,且直线DC与y轴交于点E.

①求直线DC的解析式;

②如点M是直线DC上的一个动点,在x轴上方的平面内有另一点N,且以OEMN为顶点的四边形是菱形,请求出点N的坐标.(直接写出结果,不需要过程.)

答案:
解析:

  解:(1)∵顶点()在直线∴m=3  (1分)

  根据题意,  解得

  ∴抛物线:  (3分)

  (2)①作 ∴DHBG

  ∴ ∵

  ∴ CH=4

  ∴点C的坐标为(2,4)  (2分)

  ∵()根据题意

  解得:

  ∴直线DC解析式  (2分)

  ②N1()、N2、N3  (每个2分,共6分)


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在直角坐标平面xOy中,抛物线C1的顶点为A(-1,-4),且过点B(-3,0)
(1)写出抛物线C1与x轴的另一个交点M的坐标;
(2)将抛物线C1向右平移2个单位得抛物线C2,求抛物线C2的解析式;
(3)写出阴影部分的面积S.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在直角坐标平面中,Rt△ABC的斜边AB在x轴上,直角顶点C在y轴的负半轴上,cos∠ABC=
45
,点P在线段OC上,且PO、OC的长是方程x2-15x+36=0的两根.
(1)求P点坐标;
(2)求AP的长;
(3)在x轴上是否存在点Q,使以A、Q、C、P为顶点的四边形是梯形?若存在,请求出直线PQ的解析式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在直角坐标平面内,函数y=
m
x
(x>0,m是常熟)的图象经过A(1,4),B(a,b),其中a>1,过点A作x轴垂线,垂足为C,过点B作y轴垂线,垂足为D,连接AD,DC,CB
(Ⅰ)求函数y=
m
x
的解析式;
(Ⅱ)若△ABD的面积为4,求点B的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

完成下列各题:
(1)解方程组
2x+y=2;         ①
3x-2y=10.      ②

(2)如图,在直角坐标平面内,O为原点,点A的坐标为(10,0),点B在第一象限内,BO=5,sin∠BOA=
3
5
.求cos∠BAO的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标平面内的△ABC中,点A的坐标为(0,2),点C的坐标为(5,5),要使以A、B、C、D为顶点的四边形是平行四边形,且点D坐标在第一象限,那么点D的坐标是
(2,5)或(8,5)
(2,5)或(8,5)

查看答案和解析>>

同步练习册答案