精英家教网 > 初中数学 > 题目详情
如图,△ABC是一块形状为三角形的余料,边BC=120cm,高AD=80cm,将其加工成矩形PQMN,使点Q、M在BC上,点P在AB上,点N在AC上,且PN:PQ=2:1,求PQ.
如图,
∵四边形PQMN是矩形,点Q、M在BC上,点P在AB上,点N在AC上,
∴PNQMBC,
又∵AD是高,
PN
BC
=
AE
AD

而ED=PQ,
且PN:PQ=2:1,
2PQ
BC
=
AD-PQ
AD

PQ=
BC×AD
2AD+BC

=
120×80
2×80+120

=
240
7
(cm).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

有一个测量弹跳力的体育器材,如图所示,竖杆AC、BD的长度分别为200厘米、300厘米,CD=300厘米.现有一人站在斜杆AB下方的点E处,直立、单手上举时中指指尖(点F)到地面的高度为EF,屈膝尽力跳起时,中指指尖刚好触到斜杆AB上的点G处,此时,就将EG与EF的差值y(厘米)作为此人此次的弹跳成绩.设CE=x(厘米),EF=a(厘米).
(1)问点G比点A高出多少厘米?(用含y,a的式子表示)
(2)求出由x和a算出y的计算公式;
(3)现有甲、乙两组同学,每组三人,每人各选择一个适当的位置尽力跳了一次,且均刚好触到斜杆,由所得公式算得两组同学弹跳成绩如下右表所示,由于某种原因,甲组C同学的弹跳成绩辨认不清,但知他弹跳时的位置为x=150厘米,且a=205厘米,请你计算C同学此次的弹跳成绩,并从两组同学弹跳成绩的整齐程度比较甲、乙两组同学的弹跳成绩.
甲组乙组
A同学B同学C同学a同学b同学C同学
弹跳成绩(厘米)3639424434
(方差计算公式:S2=
1
n
[(x1-
.
x
2+(x2-
.
x
2+…+(xn-
.
x
2],其中
.
x
表示x1、x2、…、xn的平均数)

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图是圆桌正上方的灯泡(看做一个点)发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图,已知桌面的直径为1.2m,桌面距离地面1m.若灯泡距离地面3m,则地面上阴影部分的面积为(  )
A.0.36πm2B.0.81πm2C.2πm2D.3.24πm2

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

阳光通过窗口AB照射到室内,在地面上留下2.7米的亮区DE(如图所示),已知亮区到窗口下的墙角的距离EC=8.7米,窗口高AB=1.8米,则窗口底边离地面的高BC为(  )
A.4米B.3.8米C.3.6米D.3.4米

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

为了测量校园内一棵不可攀的树的高度,学校数学应用实践小组做了如下的探索:实践:根据《自然科学》中的反射定律,利用一面镜子和一根皮尺,设计如示意图的测量方案:把镜子放在离树(AB)9.3米的点E处,然后沿着直线BE后退到点D,这是恰好在镜子里看到树梢顶点A,再用皮尺量得DE=2.4米,观察者目高CD=1.6米,请你计算树(AB)的高度.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

为测量被荷花池相隔的两树A、B的距离,数学活动小组设计了如图所示的测量方案:在AB的垂线AP上取两点C、E,再定出AP的垂线FE,使F、C、B在一条直线上.其中三位同学分别测量出了三组数据:
(1)AC、∠ACB;
(2)AC、CE;
(3)EF、CE、AC.
能根据所测数据,求得A、B两树距离的是(  )
A.(1)B.(1),(2)C.(2),(3)D.(1),(3)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,小明为测量一棵树CD的高度,他在距树24m处立了一根高为2m的标杆EF,然后小明前后调整自己的位置,当他与树相距27m时,他的眼睛、标杆的顶端和树顶端在同一直线上.已知小明身高1.6m,求树的高度.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知一直立的电线杆在地面上的影长为28m,同时,高为1.4m的测竿在地面上的影长为2.8m,由此可知该电线杆的长为______m.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,原点O是△ABC和△A′B′C′的位似中心,点A(1,0)与点A′(-2,0)是对应点,△ABC的面积是
3
2
,则△A′B′C′的面积是______.

查看答案和解析>>

同步练习册答案