【题目】如图,点B、D、C、F在一条直线上,且BD=FC,AB=EF.
(1)请你只添加一个条件(不再加辅助线),使△ABC≌△EFD,你添加的条件是 ;
(2)添加了条件后,证明△ABC≌△EFD.
科目:初中数学 来源: 题型:
【题目】问题情境:如图,∥,,,求的度数.
小明的思路是过点作∥,通过平行线的性质来求.
(1)按照小明的思路,求的度数;
(2)问题迁移:如图,∥,点在射线上运动,记,,当点在、两点之间运动时,问与、之间有何数量关系?请说明理由;
(3)在(2)的条件下,如果点不在、两点之间运动时(点与点、、三点不重合),请直接写出与、之间的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】设, ,……, ,(n为正整数)
(1)试说明是8的倍数;
(2)若△ABC的三条边长分别为、、(为正整数)
①求的取值范围.
②是否存在这样的,使得△ABC的周长为一个完全平方数,若存在,试举出一例,若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,在平面直角坐标系中,二次函数y=﹣x2+bx+c的图象与坐标轴交于A,B,C三点,其中点A的坐标为(﹣3,0),点B的坐标为(4,0),连接AC,BC.动点P从点A出发,在线段AC上以每秒1个单位长度的速度向点C作匀速运动;同时,动点Q从点O出发,在线段OB上以每秒1个单位长度的速度向点B作匀速运动,当其中一点到达终点时,另一点随之停止运动,设运动时间为t秒.连接PQ.
(1)填空:b= ,c= ;
(2)在点P,Q运动过程中,△APQ可能是直角三角形吗?请说明理由;
(3)在x轴下方,该二次函数的图象上是否存在点M,使△PQM是以点P为直角顶点的等腰直角三角形?若存在,请求出运动时间t;若不存在,请说明理由;
(4)如图②,点N的坐标为(﹣,0),线段PQ的中点为H,连接NH,当点Q关于直线NH的对称点Q′恰好落在线段BC上时,请直接写出点Q′的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,E点为DF上的点,B为AC上的点,∠1=∠2,∠C=∠D,那么DF∥AC,请完成它成立的理由
∵∠1=∠2 ( )
∠2=∠3 ,∠1=∠4( )
∴∠3=∠4( )
∴_______∥_______ ( )
∴∠C=∠ABD( )
∵∠C=∠D( )
∴∠D=∠ABD( )
∴DF∥AC( )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知∠BAC=40°,把△ABC绕着点A顺时针旋转,使得点B与CA的延长线上的点D重合,连接CE.
(1)△ABC旋转了多少度?
(2)连接CE,试判断△AEC的形状.
(3)若∠ACE=20°,求∠AEC的度数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com