精英家教网 > 初中数学 > 题目详情

如图,已知直线y=数学公式交坐标轴于A,B 两点,以线段AB为边向上作正方形ABCD,过点A,D,C的抛物线与直线另一个交点为E.
(1)请直接写出点C,D的坐标;
(2)求抛物线的解析式;
(3)若正方形以每秒数学公式个单位长度的速度沿射线AB下滑,直至顶点D落在x轴上时停止.设正方形落在x轴下方部分的面积为S,求S关于滑行时间t的函数关系式,并写出相应自变量t的取值范围.

解:(1)∵直线y=
∴当x=0时,y=1,当y=0时,x=2,
∴OA=1,OB=2,
过C作CZ⊥x轴于Z,过D作DM⊥y轴于M,
∵四边形ABCD是正方形,
∴AD=AB=BC,∠ABC=∠AOB=∠CZB=90°,
∴∠ABO+∠CBZ=90°,∠OAB+∠ABO=90°,
∴∠OAB=∠CBZ,
在△AOB和△BZC中

∴△AOB≌△BZC(AAS),
∴OA=BZ=1,OB=CZ=2,
∴C(3,2),
同理可求D的坐标是(1,3);

(2)设抛物线为y=ax2+bx+c,
∵抛物线过A(0,1),D(1,3),C(3,2),

解得:a=-,b=,c=1,
∴抛物线的解析式为y=-x2+x+1;

(3)∵OA=1,OB=2,
∴由勾股定理得:AB=
①当点A运动到x轴上点F时,t=1,
当0<t≤1时,如图1,
∵∠OFA=∠GFB′,tan∠OFA==
∴tan∠GFB′===
∴GB′=t,
∴S△FB′G=FB′×GB′=t•t,
∴S=t2
②当点C运动x轴上时,t=2,
当1<t≤2时,如图2,
∵AB=A′B′=
∴A′F=t-
∴A′G=
∵B′H=t,
∴S四边形A′B′HG=(A′G+B′H)•A′B′=•(+t)
∴S=t-
③当点D运动到x轴上时,t=3,
当2<t≤3时,如图3,
∵A′G=
∴GD′=-=
∵S△AOF=×2×1=1,OA=1,∠AOF=∠FA′G=90°,∠AFO=∠GFA′,
∴△AOF∽△GA′F,
=(2
∴S△GA′F=(2
∴S五边形GA′B′CH=(2-(2
∴S=-t2+t-
分析:(1)求出OA、OB,根据勾股定理求出AB,过C作CZ⊥x轴于Z,过D作DM⊥y轴于M,证△AOB≌△BZC≌△DMA,推出BZ=OA=DM=1,CZ=OB=MA=2,即可求出答案;
(2)设抛物线为y=ax2+bx+c,把A、D、C的坐标代入求出即可;
(3)分为三种情况,根据题意画出图形,①当点A运动到x轴上点F时,②当点C运动x轴上时,③当点D运动到x轴上时,根据相似三角形的性质和判定和三角形的面积公式求出即可.
点评:本题考查了相似三角形的性质和判定,一次函数图象上点的特征,用待定系数法求出二次函数的解析式,正方形的性质,勾股定理,三角形的面积等知识点的应用,主要考查学生综合运用性质进行推理的能力,难度偏大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知直线AB交两坐标于A、B两点,且OA=OB=1,点P(a、b)是双曲线y=
1
2x
上在精英家教网第一象内的点过点P作PM⊥x轴于M、PN⊥y轴于N.两垂线与直线AB交于E、F.
(1)分别写出点E、F的坐标(分别用a或b表示);
(2)求△OEF的面积(结果用a、b表示);
(3)△AOF与△BOE是否相似?请说明理由;
(4)当P在双曲线y=
1
2x
上移动时,△OEF随之变动,观察变化过程,△OEF三内角中有无大小始终保持不变的内角?若有,请指出它的大小,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

23、如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD丄PA,垂足为D.
(1)求证:CD为⊙O的切线;
(2)若DC+DA=6,⊙O的直径为10,求AB的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•昌平区一模)如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,C为⊙O上一点,且AC平分∠PAE,过点C作CD⊥PA于D.
(1)求证:CD是⊙O的切线;
(2)若AD:DC=1:3,AB=8,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知直线MA交⊙O于A、B两点,BC是⊙O的直径,点D在⊙O上,且BD平分∠MBC,过D作DE⊥MA,垂足为E.
(1)求证:DE是⊙O的切线;
(2)若DE+BE=12,⊙O的直径是20,求AB和BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D.
(1)求证:CD为⊙O的切线;
(2)若DC=4,AC=5,求⊙O的直径的AE.

查看答案和解析>>

同步练习册答案