【题目】某学校准备印刷一批证书,现有两个印刷厂可供选择:甲厂收费方式:收制版费1000元,每本印刷费0.5元;乙厂收费方式:不收制版费,每本收印刷费1.5元;若该校印制证书x本.
(1)当印制证书3000本时,甲厂的收费为 元,乙厂的收费为 元;
(2)请问印刷多少本证书时,甲乙两厂收费相同?
(3)你认为选择哪一家印刷厂更优惠?
【答案】(1)2500,4500;(2)当印刷1000本时,甲乙两厂收费相同;(3)当印刷数量时,选择乙厂印刷更加优惠;当印刷数量时,两厂费用一样;当印刷数量时,选择甲厂印刷更加优惠.
【解析】
(1)根据甲乙两厂的收费方式分别计算费用;
(2)设印刷x本,分别计算出两厂的费用表达式,然后建立方程求解;
(3)利用(2)中的表达式,分别讨论甲收费少,和乙收费少的情况,得出结论.
解:(1)当印制证书3000本时,甲厂收费:元,
乙厂的收费:元,
故答案为:2500,4500.
(2)设印刷x本,则甲厂收费:元,
乙厂收费:元,当两厂收费相同时,
,
解得:,
所以当印刷1000本时,甲乙两厂收费相同.
(3)若甲厂收费少,则,解得:,
若乙厂收费少,则,解得:,
综上可知,当印刷数量时,选择乙厂印刷更加优惠;当印刷数量时,两厂费用一样;当印刷数量时,选择甲厂印刷更加优惠.
科目:初中数学 来源: 题型:
【题目】如图,直线分别与轴、轴交于两点,与直线交于点.
(1)点坐标为( , ),B为( , ).
(2)在线段上有一点,过点作轴的平行线交直线于点,设点的横坐标为,若四边形是平行四边形时,求出此时的值.
(3)若点为轴正半轴上一点,且,则在轴上是否存在一点,使得四个点能构成一个梯形若存在,求出所有符合条件的点坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(12分)“世界那么大,我想去看看”一句话红遍网络,骑自行车旅行越来越受到人们的喜爱,各种品牌的山地自行车相继投放市场,顺风车行经营的A型车2015年6月份销售总额为3.2万元,今年经过改造升级后A型车每辆销售价比去年增加400元,若今年6月份与去年6月份卖出的A型车数量相同,则今年6月份A型车销售总额将比去年6月份销售总额增加25%.
(1)求今年6月份A型车每辆销售价多少元?(用列方程的方法解答)
(2)该车行计划7月份新进一批A型车和B型车共50辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?
A、B两种型号车的进货和销售价格如下表:
A型车 | B型车 | |
进货价格(元/辆) | 1100 | 1400 |
销售价格(元/辆) | 今年的销售价格 | 2400 |
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=x+3与两坐标轴交于A,B两点,抛物线y=﹣x2+bx+c过A、B两点,且交x轴的正半轴于点C.
(1)直接写出A、B两点的坐标;
(2)求抛物线的解析式和顶点D的坐标;
(3)在抛物线上是否存在点P,使得△PAB是以AB为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知面积为12的长方形ABCD,一边AB在数轴上。点A表示的数为—2,点B表示的数为1,动点P从点B出发,以每秒1个单位长度的速度沿数轴向左匀速运动,设点P运动时间为t(t>0)秒.
(1)长方形的边AD长为 单位长度;
(2)当三角形ADP面积为3时,求P点在数轴上表示的数是多少;
(3)如图2,若动点Q以每秒3个单位长度的速度,从点A沿数轴向右匀速运动,与P点出发时间相同。那么当三角形BDQ,三角形BPC两者面积之差为时,直接写出运动时间t 的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某手机经销商计划同时购进一批甲、乙两种型号的手机,已知每部甲种型号的手机进价比每部乙种型号的手机进价多200元,且购进3部甲型号手机和2部乙型号手机,共需要资金9600元;
(1)求甲、乙型号手机每部进价为多少元?
(2)该店计划购进甲、乙两种型号的手机共20台进行销售,现已有顾客预定了8台甲种型号手机,且该店投入购进手机的资金不多于3.8万元,请求出有几种进货方案?并请写出进货方案.
(3)售出一部甲种型号手机,利润率为30%,乙种型号手机的售价为2520元.为了促销,公司决定每售出一台乙型号手机,返还顾客现金m元充话费,而甲型号手机售价不变,要使(2)中所有方案获利相同,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将两个全等的直角三角形ABC和DBE按图①方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E落在AB上,DE所在直线交AC所在直线于点F.
(1)连接BF,求证:CF=EF.
(2)若将图①中的△DBE绕点B按顺时针方向旋转角α,且0°<α<60°,其他条件不变,如图②,求证:AF+EF=DE.
(3)若将图①中的△DBE绕点B按顺时针方向旋转角β,且60°<β<180°,其他条件不变,如图③,你认为(2)中的结论还成立吗?若成立,写出证明过程;若不成立,请直接写出AF、EF与DE之间的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,圆心都在x轴正半轴上的半圆O1,半圆O2,…,半圆On与直线l相切.设半圆O1,半圆O2,…,半圆On的半径分别是r1,r2,…,rn,则当直线l与x轴所成锐角为30°,且r1=1时,r2018=_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,方格纸中每个小正方形的边长均为1.线段AB的两个端点在小正方形的顶点上。
(1)在图中画一个以AB为腰的等腰三角形△ABC,点C在小正方形的顶点上,且tan∠B=3;
(2)在图中画一个以AB为底的等腰三角形△ABD,点D在小正方形的项点上,且△ABD是锐角三角形.连接CD,请直接写出线段CD的长。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com