精英家教网 > 初中数学 > 题目详情
如图,已知△ABC中,∠BAC、∠ABC的平分线交于O,AO交BC于D,BO交AC于E,连OC,过O作OF⊥BC于F.
(1)试判断∠AOB与∠COF有何数量关系,并证明你的结论;
(2)若∠ACB=60°,探究OE与OD的数量关系,并证明你的结论.
分析:(1)过O作OM⊥AC于M,ON⊥AB于N,根据角平分线性质求出OM=ON=OF,求出CO平分∠ACB,求出∠AOB=90°+
1
2
∠ACB,∠COF=90°-∠OCF,即可求出答案.
(2)求出∠MOE=∠DOF,∠OME=∠OFD,根据AAS证出△MOE≌△FOD即可.
解答:(1)∠AOB+∠COF=180°,
证明:过O作OM⊥AC于M,ON⊥AB于N,
∵AD平分∠CAB,BE平分∠CBA,OF⊥BC,
∴OM=ON,ON=OF,
∴OM=OF,
∴O在∠ACB的角平分线上,
∴∠OCF=
1
2
∠ACB,
∵OF⊥BC,
∴∠CFO=90°,
∴∠COF+∠OCF=90°,
∴∠COF=90°-∠OCF,①
∵AD平分∠CAB,BE平分∠CBA,
∴∠OAB=
1
2
∠CAB,∠OBA=
1
2
∠CBA,
∴∠AOB=180°-(∠OAB+∠OBA)
=180°-
1
2
(∠CAB+∠CBA)
=180°-
1
2
(180°-∠ACB)
=90°+
1
2
∠ACB
=90°+∠OCF,②
由①②得:∠AOB+∠COF=90°+∠OCF+90°-∠OCF=180°;

(2)OE=OD,
证明:∵∠ACB=60°,
∴由(1)知:∠AOB=90°+
1
2
∠ACB=90°+30°=120°,
∴∠EOD=∠AOB=120°,
∵OM⊥AC.OF⊥BC,
∴∠OME=∠OFD=90°,∠CMO=∠CFO=90°,
∴∠MOF=360°-90°-90°-60°=120°,
∴∠MOE=∠DOF=120°-∠MOD,
在△EOM和△DOF中
∠OME=∠OFD
∠MOE=∠DOF
OM=OF

∴△EOM≌△DOF(AAS),
∴OE=OD.
点评:本题考查了角平分线性质,全等三角形的性质和判定,三角形的内角和定理的应用,主要考查学生的推理能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知△ABC中,AB=AC,E、F分别在AB、AC上且AE=CF.
求证:EF≥
12
BC.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△ABC中,P是AB上一点,连接CP,以下条件不能判定△ACP∽△ABC的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•梓潼县一模)如图,已知△ABC中,∠C=90°,AC=4,BC=3,则sinA=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△ABC中,BC=8,BC边上的高h=4,D为BC上一点,EF∥BC交AB于E,交AC于F(EF不过A、B),设E到BC的距离为x,△DEF的面积为y,那么y关于x的函数图象大致是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△ABC中,AB=AC,D是BC中点,则下列结论不正确的是(  )

查看答案和解析>>

同步练习册答案