精英家教网 > 初中数学 > 题目详情
若P点为y轴上一点,且点P到点A(3,4)、B(2,-1)的距离之和最小,则P点的坐标为(  )
A、(0,
5
3
B、(0,1)
C、(0,
1
3
D、(0,0)
分析:先求出点A关于y轴的对称点A′的坐标,再用待定系数法求出直线A′B的解析式,求出直线与y轴的交点即可.
解答:解:∵A(3,4),
∴点A关于y轴的对称点A′的坐标为(-3,4),
设直线A′B的解析式为y=kx+b(k≠0),
-3k+b=4
2k+b=-1
,解得
k=-1
b=1

∴直线A′B的解析式为y=-x+1,
∴P(0,1).
故选B.
点评:本题考查的是轴对称-最短路线问题,熟知两点之间,线段最短是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•泰州一模)如图,A(-2,1)、B(-1,m)为反比例函数y=
kx
(x<0)图象上的两个点.
(1)求k的值及直线AB的解析式;
(2)若点P为x轴上一点,且满足△OAP的面积为3,求出P点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:抛物线y=a(x-2)2+b(ab<0)的顶点为A,与x轴的交点为B,C
(1)抛物线对称轴方程为
x=2
x=2

(2)若D点为抛物线对称轴上一点,若以A,B,C,D为顶点的四边形是正方形,则a,b满足的关系式是
ab=-1
ab=-1

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

若P点为y轴上一点,且点P到点A(3,4)、B(2,-1)的距离之和最小,则P点的坐标为


  1. A.
    (0,数学公式
  2. B.
    (0,1)
  3. C.
    (0,数学公式
  4. D.
    (0,0)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:抛物线y=a(x-2)2+b(ab<0)的顶点为A,与x轴的交点为B,C
(1)抛物线对称轴方程为______;
(2)若D点为抛物线对称轴上一点,若以A,B,C,D为顶点的四边形是正方形,则a,b满足的关系式是______.

查看答案和解析>>

同步练习册答案