精英家教网 > 初中数学 > 题目详情

【题目】如图,直线,点的坐标为,过点轴的垂线交直线于点,以原点为圆心,长为半径画弧交轴负半轴于点;再过点轴的垂线交直线于点,以原点为圆心,长为半径画弧交轴负半轴于点,按此作法进行下去.点的坐标为__________

【答案】-220190

【解析】

先根据一次函数解析式求出B1点的坐标,再根据B1点的坐标求出OA2的长,用同样的方法得出OA3OA4的长,以此类推,总结规律便可求出点A2020的坐标.

解:∵点A1坐标为(-10),

OA1=1

∵在中,当x=-1时,y=,即B1点的坐标为(-1),

∴由勾股定理可得OB1==2,即OA2=2

即点A2的坐标为(-20),即(-210),

B2的坐标为(-2),

同理,点A3的坐标为(-40),即(-220),

B3的坐标为(-4),

以此类推便可得出:点A2020的坐标为(-220190.

故答案为:(-220190.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】我市某中学举行中国梦校园好声音歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.

1)根据图示填写下表;

平均数(分)

中位数(分)

众数(分)

初中部

85

高中部

85

100

2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;

3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知AB是⊙O的直径,弦CDAB相交,∠BAC=40°.

(1)如图1,若D为弧AB的中点,求∠ABC和∠ABD的度数;

(2)如图2,过点D作⊙O的切线,与AB的延长线交于点P,若DPAC,求∠OCD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方m处,过了2s后,测得小汽车与车速检测仪间距离为m,这辆小汽车超速了吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知△ABC是等边三角形,P为△ABC所在平面内一个动点,BP=BA,若﹤∠PBC 180°,且∠PBC的平分线上一点D满足DB=DA.

(1)BPBA重合时(如图1),则∠BPD=______°.

(2)BP在∠ABC内部时(如图2),求∠BPD的度数

(3)BP在∠ABC外部时,请直接写出∠BPD的度数,并画出相应的图形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,有长为22米的篱笆,一面利用墙(墙的最大可用长度为14米),围成中间隔有一道篱笆的长方形花圃,有以下两种围法.

(1)如图1,设花圃的宽AB为x米,面积为y米2,求y与x之间的含函数表达式,并确定x的取值范围;

(2)如图2,为了方便出入,在建造篱笆花圃时,在BC上用其他材料造了宽为1米的两个小门,设花圃的宽AB为a米,面积为S米2,求S与a之间的函数表达式及S的最大值?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在四边形中,

1)如图(a)所示,分别是的角平分线,判断的位置关系,并证明.

2)如图(b)所示,分别是的角平分线,直接写出的位置关系.

3)如图(c)所示,分别是的角平分线,判断的位置关系,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将两张完全相同的矩形纸片按如图方式放置,为重合的对角线.重叠部分为四边形

试判断四边形为何种特殊的四边形,并说明理由;

,求四边形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两工程队承包一项工程,如果甲工程队单独施工,恰好如期完成;如果乙工程队单独施工就要超过6个月才能完成,现在甲、乙两队先共同施工4个月,剩下的由乙队单独施工,则恰好如期完成.

(1)问原来规定修好这条公路需多少长时间?

(2)现要求甲、乙两个工程队都参加这项工程,但由于受到施工场地条件限制,甲、乙两工程队不能同时施工.已知甲工程队每月的施工费用为4万元,乙工程队每月的施工费用为2万元.为了结算方便,要求:甲、乙的施工时间为整数个月,不超过15个月完成.当施工费用最低时,甲、乙各施工了多少个月?

查看答案和解析>>

同步练习册答案