精英家教网 > 初中数学 > 题目详情

试比较20062007与20072006的大小.为了解决这个问题,写出它的一般形式,即比较nn+1和(n+1)n的大小(为正整数),从分析n=1、2、3、…这些简单问题入手,从中发现规律,经过归纳、猜想出结论:
(1)在横线上填写“<”、“>”、“=”号:
12______21,23______32,34______43,45______54,56______65,…
(2)从上面的结果经过归纳,可以猜想出nn+1和(n+1)n的大小关系是______;
(3)根据上面猜想得出的结论试比较下列两个数的大小:20062007______20072006

解:(1)12<21,23<32,34>43,45>54,56>65,…

(2)当n≤2时,nn+1<(n+1)n
当n>2时,nn+1>(n+1)n

(3)20062007>20072006
分析:此题中的规律为当n≤2时,nn+1<(n+1)n;当n>2时,nn+1>(n+1)n
点评:本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于找到“<”、“>”的临界点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

1、(试比较20062007与20072006的大小.为了解决这个问题,写出它的一般形式,即比较nn+1和(n+1)n的大小(为正整数),从分析n=1、2、3、…这些简单问题入手,从中发现规律,经过归纳、猜想出结论:
(1)在横线上填写“<”、“>”、“=”号:
12
21,23
32,34
43,45
54,56
65,…
(2)从上面的结果经过归纳,可以猜想出nn+1和(n+1)n的大小关系是:
当n≤
2
时,nn+1
(n+1)n
当n>
2
时,nn+1
(n+1)n
(3)根据上面猜想得出的结论试比较下列两个数的大小:20062007
20072006

查看答案和解析>>

科目:初中数学 来源: 题型:

23、(试比较20062007与20072006的大小.为了解决这个问题,写出它的一般形式,即比较nn+1和(n+1)n的大小(为正整数),从分析n=1、2、3、…这些简单问题入手,从中发现规律,经过归纳、猜想出结论:
(1)在横线上填写“<”、“>”、“=”号:
12
21,23
32,34
43,45
54,56
65,…
(2)从上面的结果经过归纳,可以猜想出nn+1和(n+1)n的大小关系是
当n≤2时,nn+1<(n+1)n
当n>2时,nn+1>(n+1)n

(3)根据上面猜想得出的结论试比较下列两个数的大小:20062007
20072006

查看答案和解析>>

科目:初中数学 来源: 题型:

已知正比例函数y=kx的图象与反比例函数y=
5-k
x
(k为常数,k≠0)的图象有一个交点的横坐标是2.
(1)求这两个函数的解析式;
(2)求这两个函数图象的交点坐标;
(3)若点A(x1,y1),B(x2,y2)是反比例函数y=
5-k
x
图象上的两点,且x1<x2,试比较y1与y2的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,以线段AB为直径作半圆O1,以线段AO1为直径作半圆O2,半径O1C交半圆O2于D点.试比较
AC
AD
的长.

查看答案和解析>>

同步练习册答案