精英家教网 > 初中数学 > 题目详情
(2011•广元)如图,在直角梯形ABCD中,AD∥BC,BC⊥CD,∠B=60°,BC=2AD,E、F分别为AB、BC的中点.
(1)求证:四边形AFCD是矩形;
(2)求证:DE⊥EF.
证明:(1)∵F为BC的中点,
∴BF=CF=BC,
∵BC=2AD,
即AD=BC,
∴AD=CF,
∵AD∥BC,
∴四边形AFCD是平行四边形,
∵BC⊥CD,
∴∠C=90°,
∴?AFCD是矩形;

(2)∵四边形AFCD是矩形,
∴∠AFB=∠FAD=90°,
∵∠B=60°,
∴∠BAF=30°,
∴∠EAD=∠EAF+∠FAD=120°,
∵E是AB的中点,
∴BE=AE=EF=AB,
∴△BEF是等边三角形,
∴∠BEF=60°,BE=BF=AE,
∵AD=BF,
∴AE=AD,
∴∠AED=∠ADE==30°,
∴∠DEF=180°﹣∠AED﹣∠BF=180°﹣30°﹣60°=90°.
∴DE⊥EF.解析:
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2011•广元)如图,抛物线y=ax2+2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A(﹣4,0)和B.
(1)求该抛物线的解析式;
(2)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CEQ的面积最大时,求点Q的坐标;
(3)平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(﹣2,0).问是否有直线l,使△ODF是等腰三角形?若存在,请求出点F的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•广元)如图,AB是⊙O的直径,BC切⊙O于点B,连接CO并延长交⊙O于点D、E,连接AD并延长交BC于点F.
(1)试判断∠CBD与∠CEB是否相等,并证明你的结论;
(2)求证:=
(3)若BC=AB,求tan∠CDF的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•广元)如图,M为矩形纸片ABCD的边AD的中点,将纸片沿BM、CM折叠,使点A落在A1处,点D落在D1处.若∠A1MD1=40°,则∠BMC的度数为 _________ 

查看答案和解析>>

科目:初中数学 来源:2011年初中毕业升学考试(四川广元卷)数学解析版 题型:解答题

(2011•广元)如图,抛物线y=ax2+2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A(﹣4,0)和B.
(1)求该抛物线的解析式;
(2)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CEQ的面积最大时,求点Q的坐标;
(3)平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(﹣2,0).问是否有直线l,使△ODF是等腰三角形?若存在,请求出点F的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案