精英家教网 > 初中数学 > 题目详情
如图,一次函数的图象经过点A、B,则该一次函数的关系式为( )

A.
B.
C.y=-2x+1
D.y=2x+1
【答案】分析:根据待定系数法,设出函数解析式,将(-2,0),(0,1)分别代入解析式,列出方程组求出k、b的值即可.
解答:解:设函数解析式为y=kx+b,
将(-2,0),(0,1)分别代入解析式得,

解得
函数解析式为y=x+1.
故选B.
点评:本题考查了待定系数法求一次函数的解析式,根据题意列出关于k、b的方程组是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知反比例函数y=
12x
的图象和一次函数y=kx-7的图象都经过点P(m,2).
(1)求这个一次函数的解析式;
(2)如果等腰梯形ABCD的顶点A、B在这个一次函数的图象上,顶点C、D在这个反比例函数的图象上,两底AD、BC与y轴平行,且A和B的横坐标分别为a、b(b>a>0),求代数式ab的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,一次函数的图象与反比例函数y1= –  ( x<0)的图象相交于A点,与y轴、x轴分别相交于BC两点,且C(2,0).当x<–1时,一次函数值大于反比例函数的值,当x>–1时,一次函数值小于反比例函数值.

(1)    求一次函数的解析式;

(2)    设函数y2=  (x>0)的图象与y1= –  (x<0)的图象关于y轴对称.在y2=  (x>0)的图象上取一点PP点的横坐标大于2),过PPQx轴,垂足是Q,若四边形BCQP的面积等于2,求P点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,一次函数的图象与反比例函数(x<0)的图象相交于A点,与y轴、x轴分别相交于B、C两点,且C(2,0),当x<-1时,一次函数值大于反比例函数值,当x>-1时,一次函数值小于反比例函数值.

(1)求一次函数的解析式;

(2)设函数(x>0)的图象与(x<0)的图象关于y轴对称,在(x>0)的图象上取一点P(P点的横坐标大于2),过P点作PQ⊥x轴,垂足是Q,若四边形BCQP的面积等于2,求P点的坐标.

解答:

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,一次函数的图象与反比例函数y1= – ( x<0)的图象相交于A点,与y轴、x轴分别相交于BC两点,且C(2,0).当x<–1时,一次函数值大于反比例函数的值,当x>–1时,一次函数值小于反比例函数值.

(1)   求一次函数的解析式;

(2)   设函数y2= (x>0)的图象与y1= – (x<0)的图象关于y轴对称.在y2= (x>0)的图象上取一点PP点的横坐标大于2),过PPQx轴,垂足是Q,若四边形BCQP的面积等于2,求P点的坐标.

 

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,一次函数的图象与反比例函数y1= – ( x<0)的图象相交于A点,与y轴、x轴分别相交于BC两点,且C(2,0).当x<–1时,一次函数值大于反比例函数的值,当x>–1时,一次函数值小于反比例函数值.

(1)   求一次函数的解析式;

(2)   设函数y2= (x>0)的图象与y1= – (x<0)的图象关于y轴对称.在y2= (x>0)的图象上取一点PP点的横坐标大于2),过PPQx轴,垂足是Q,若四边形BCQP的面积等于2,求P点的坐标.

 

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

同步练习册答案