精英家教网 > 初中数学 > 题目详情

【题目】有这样一个问题:探究函数y的图象与性质.小彤根据学习函数的经验,对函数y的图象与性质进行了探究.

下面是小彤探究的过程,请补充完整:

(1)函数y的自变量x的取值范围是   

(2)下表是yx的几组对应值:

x

2

1

0

1

2

4

5

6

7

8

y

m

0

1

3

2

m的值为   

(3)如图所示,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出了图象的一部分,请根据剩余的点补全此函数的图象;

(4)观察图象,写出该函数的一条性质   

(5)若函数y的图象上有三个点A(x1y1)B(x2y2)C(x3y3),且x13x2x3,则y1y2y3之间的大小关系为   

【答案】(1)x≠3;(2);(3)详见解析;(4)当x>3时y随x的增大而减小等(答案不唯一);(5)<<

【解析】

(1)分式有意义,分母不等于零,

(2)将x=-1代入即可,

(3)图像见详解,

(4)根据增减性即可得出结论,见详解,

(5)在图像中找到满足<3<<的三个点比较纵坐标即可得到结论.

解:(1)因为分式有意义,分母不等于零,所以x-3≠0,即x≠3

(2)将x=-1代入,解得 m=

(3)如图所示;

(4)当x>3时y随x的增大而减小(答案不唯一);

(5)当x<3时,y<1,当x>3时,y>1且y随x的增大而减小,所以<<

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图:点ABCD为⊙O上的四等分点,动点P从圆心O出发,沿OCDO的路线做匀速运动.设运动的时间为t秒,∠APB的度数为y.则下列图象中表示yt之间函数关系最恰当的是(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有一边长为2的正方形纸片ABCD,先将正方形ABCD对折,设折痕为EF(如图①);再沿过点D的折痕将角A翻折,使得点A落在EF的H上(如图②),折痕交AE于点G,则EG的长度为(  )

A. 4﹣6 B. 2﹣3 C. 8﹣4 D. 4﹣2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,线段 AB4M AB 的中点,动点 P 到点 M 的距离是 1,连接 PB,线段

PB 绕点 P 逆时针旋转 90°得到线段 PC,连接 AC,则线段 AC 长度的最大值是_________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,RtABC的直角边BCx轴负半轴上,斜边AC上的中线BD的反向延长线交y轴负半轴于点E,反比例函数y=﹣x0)的图象过点A,则BEC的面积是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,AB4cm,点EF同时从C点出发,以1cm/s的速度分别沿CBBACDDA运动,到点A时停止运动.设运动时间为t(s),△AEF的面积为S(cm2),则S(cm2)t(s)的函数关系可用图象表示为( )

A. B.

C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一直角三角形放置在如图所示的平面直角坐标系中,直角顶点C刚好落在反比例函数y=的图象的一支上,两直角边分别交yx轴于AB两点.CA=CB,四边形CAOB的面积为( )

A. 4 B. 8 C. 2 D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,AB=8BC=15,点EAD边上一点,连接BE,把△ABE沿BE折叠,使点A落在点A′处,点FCD边上一点,连接EF,把△DEF沿EF折叠,使点D落在直线EA′上的点D′处,当点D′落在BC边上时,AE的长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,AB3AD9,点E在边AD上,AE1,过ED两点的圆的圆心O在边AD的上方,直线BOAD于点F,作DGBO,垂足为G.当△ABF与△DFG全等时,⊙O的半径为(  )

A. B. C. D.

查看答案和解析>>

同步练习册答案