【题目】有这样一个问题:探究函数y=的图象与性质.小彤根据学习函数的经验,对函数y=的图象与性质进行了探究.
下面是小彤探究的过程,请补充完整:
(1)函数y=的自变量x的取值范围是 ;
(2)下表是y与x的几组对应值:
x | … | ﹣2 | ﹣1 | 0 | 1 | 2 | 4 | 5 | 6 | 7 | 8 | … |
y | … | m | 0 | ﹣1 | 3 | 2 | … |
则m的值为 ;
(3)如图所示,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出了图象的一部分,请根据剩余的点补全此函数的图象;
(4)观察图象,写出该函数的一条性质 ;
(5)若函数y=的图象上有三个点A(x1,y1)、B(x2,y2)、C(x3,y3),且x1<3<x2<x3,则y1、y2、y3之间的大小关系为 ;
科目:初中数学 来源: 题型:
【题目】如图:点A、B、C、D为⊙O上的四等分点,动点P从圆心O出发,沿O﹣C﹣D﹣O的路线做匀速运动.设运动的时间为t秒,∠APB的度数为y.则下列图象中表示y与t之间函数关系最恰当的是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有一边长为2的正方形纸片ABCD,先将正方形ABCD对折,设折痕为EF(如图①);再沿过点D的折痕将角A翻折,使得点A落在EF的H上(如图②),折痕交AE于点G,则EG的长度为( )
A. 4﹣6 B. 2﹣3 C. 8﹣4 D. 4﹣2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,线段 AB=4,M 为 AB 的中点,动点 P 到点 M 的距离是 1,连接 PB,线段
PB 绕点 P 逆时针旋转 90°得到线段 PC,连接 AC,则线段 AC 长度的最大值是_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC的直角边BC在x轴负半轴上,斜边AC上的中线BD的反向延长线交y轴负半轴于点E,反比例函数y=﹣(x<0)的图象过点A,则△BEC的面积是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD中,AB=4cm,点E、F同时从C点出发,以1cm/s的速度分别沿CB﹣BA、CD﹣DA运动,到点A时停止运动.设运动时间为t(s),△AEF的面积为S(cm2),则S(cm2)与t(s)的函数关系可用图象表示为( )
A. B.
C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一直角三角形放置在如图所示的平面直角坐标系中,直角顶点C刚好落在反比例函数y=的图象的一支上,两直角边分别交y、x轴于A、B两点.当CA=CB时,四边形CAOB的面积为( )
A. 4 B. 8 C. 2 D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,AB=8,BC=15,点E是AD边上一点,连接BE,把△ABE沿BE折叠,使点A落在点A′处,点F是CD边上一点,连接EF,把△DEF沿EF折叠,使点D落在直线EA′上的点D′处,当点D′落在BC边上时,AE的长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,AB=3,AD=9,点E在边AD上,AE=1,过E、D两点的圆的圆心O在边AD的上方,直线BO交AD于点F,作DG⊥BO,垂足为G.当△ABF与△DFG全等时,⊙O的半径为( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com