【题目】如图,梯形ABCD中,AD∥BC,∠BAD=90°,CE⊥AD于点E,AD=8cm,BC=4cm,AB=5cm.从初始时刻开始,动点P,Q 分别从点A,B同时出发,运动速度均为1cm/s,动点P沿A﹣B﹣﹣C﹣﹣E的方向运动,到点E停止;动点Q沿B﹣﹣C﹣﹣E﹣﹣D的方向运动,到点D停止,设运动时间为xs,△PAQ的面积为ycm2,(这里规定:线段是面积为0的三角形)
解答下列问题:
(1)当x=2s时,y= cm2;当x=s时,y= cm2.
(2)当5≤x≤14 时,求y与x之间的函数关系式.
(3)当动点P在线段BC上运动时,求出时x的值.
(4)直接写出在整个运动过程中,使PQ与四边形ABCE的对角线平行的所有x的值.
【答案】(1)2;9(2)(2)当5≤x≤9时,y=x2-7x+;当9<x≤13时, y=-x2+x-35;当13<x≤14时,y=-4x+56;(3)y=(4)、或
【解析】
试题分析:(1)当x=2s时,AP=2,BQ=2,利用三角形的面积公式直接可以求出y的值,当x=s时,三角形PAQ的高就是4,底为4.5,由三角形的面积公式可以求出其解.
(2)当5≤x≤14 时,求y与x之间的函数关系式.要分为三种不同的情况进行表示:当5≤x≤9时,当9<x≤13时,当13<x≤14时.
(3)可以由已知条件求出,然后根据条件求出y值,代入当5≤x≤9时的解析式就可以求出x的值.
(4)利用相似三角形的性质,相似三角形的对应线段成比例就可以求出对应的x的值.
试题解析:(1)当x=2s时,AP=2,BQ=2,
∴y==2
当x=s时,AP=4.5,Q点在EC上
∴y==9
(2)当5≤x≤9时(如图1)
y= =(5+x-4)×4-×5(x-5)-(9-x)(x-4)
y=x2-7x+
当9<x≤13时(如图2)
y=(x-9+4)(14-x)
y=-x2+x-35
当13<x≤14时(如图3)
y=×8(14-x)
y=-4x+56;
(3)当动点P在线段BC上运动时,
∵y= =×(4+8)×5=8
∴8=x2-7x+,即x2-14x+49=0,解得:x1=x2=7
∴当x=7时,y=
(4)设运动时间为x秒,
当PQ∥AC时,BP=5-x,BQ=x,
此时△BPQ∽△BAC,
故,即,
解得x=;
当PQ∥BE时,PC=9-x,QC=x-4,
此时△PCQ∽△BCE,
故,即,
解得x=;
当PQ∥BE时,EP=14-x,EQ=x-9,
此时△PEQ∽△BAE,
故,即,
解得x=.
综上所述x的值为:x=、或.
科目:初中数学 来源: 题型:
【题目】某大型企业为了保护环境,准备购买A、B两种型号的污水处理设备共8台,用于同时治理不同成分的污水,若购买A型2台、B型3台需54万,购买A型4台、B型2台需68万元.
(1)求出A型、B型污水处理设备的单价;
(2)经核实,一台A型设备一个月可处理污水220吨,一台B型设备一个月可处理污水190吨,如果该企业每月的污水处理量不低于1565吨,请你为该企业设计一种最省钱的购买方案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=ax2﹣5ax+2(a≠0)与y轴交于点C,与x轴交于点A(1,0)和点B.
(1)求抛物线的解析式;
(2)求直线BC的解析式;
(3)若点N是抛物线上的动点,且点N在第四象限内,过点N作NH⊥x轴,垂足为H,以B,N,H为顶点的三角形是否能够与△OBC相似?若能,请求出所有符合条件点N的坐标;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(3分)一个人驱车前进时,两次拐弯后,按原来的相反方向前进,这两次拐弯的角度可能是()
A.向右拐85°,再向右拐95° B.向右拐85°,再向左拐85°
C.向右拐85°,再向右拐85° D.向右拐85°,再向左拐95°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在我市实施“城乡环境综合治理”期间,某校组织学生开展“走出校门,服务社会”的公益活动.八年级一班王浩根据本班同学参加这次活动的情况,制作了如下的统计图表:
该班学生参加各项服务的频数、频率统计表:
服务类别 | 频数 | 频率 |
文明宣传员 | 4 | 0.08 |
文明劝导员 | 10 | |
义务小警卫 | 8 | 0.16 |
环境小卫士 | 0.32 | |
小小活雷锋 | 12 | 0.24 |
请根据上面的统计图表,解答下列问题:
(1)该班参加这次公益活动的学生共有 名;
(2)请补全频数、频率统计表和频数分布直方图;
(3)若八年级共有900名学生报名参加了这次公益活动,试估计参加文明劝导的学生人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列命题正确的是( )
A. 三角形的外角大于它的内角 B. 三角形的一个外角等于它的两个内角的和 C. 三角形的一个内角小于和它不相邻的任何一个外角 D. 三角形的外角的和是180°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O中,点A为中点,BD为直径,过A作AP∥BC交DB的延长线于点P.
(1)求证:PA是⊙O的切线;
(2)若,AB=6,求sin∠ABD的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com