精英家教网 > 初中数学 > 题目详情
14、关于x的方程mx2+mx+5=m有两个相等的实数根,则相应二次函数y=mx2+mx+5-m与x轴必然相交于
点,此时m=
4
分析:当二次函数与x轴有两个交点时,b2-4ac>0,与x轴有一个交点时,b2-4ac=0,与x轴没有交点时,b2-4ac<0.
解答:解:因为关于x的方程mx2+mx+5=m有两个相等的实数根,所以关于x的方程mx2+mx+5-m=0有两个相等的实数根,所以二次函数y=mx2+mx+5-m与x轴必然相交于一点;
此时b2-4ac=m2-4m(5-m)=0,解得:m=0或m=4.因为二次项系数m≠0,所以m=4.
点评:此题考查了二次函数与一元二次方程之间的关系.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:关于x的方程mx2-14x-7=0有两个实数根x1,x2,和关于y的方程y2-2(n+1)y+n2+2n=0有两个实数根y1和y2,且-2≤y1<y2≤4
①用含m的代数式
2
x1+x2
-
6
x1x2

②用含n的代数式表示2(2y1-y22)+14,并求n的取值范围;
③当
2
x1+x2
-
6
x1x2
=2(2y1-y22)+14时,求m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

关于x的方程mx2+3x+1=0有两个实数根,求m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

17、关于x的方程mx2+x-2m=0( m为常数)的实数根的个数有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:关于x的方程①x2-(m+2)x+m-2=0有两个符号不同的实数根x1,x2,且x1>|x2|>0;关于x的方程②mx2+(n-2)x+m2-3=0有两个有理数根且两根之积等于2.求整数n的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的方程mx2-(3m-1)x+2m-2=0.
(1)求证:无论m取任何实数时,方程恒有实数根;
(2)若m为整数,且抛物线y=mx2-(3m-1)x+2m-2与x轴两交点间的距离为2,求抛物线的解析式;
(3)若直线y=x+b与(2)中的抛物线没有交点,求b的取值范围.

查看答案和解析>>

同步练习册答案