精英家教网 > 初中数学 > 题目详情

如图,我国古代数学家赵爽的“弦图”是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.如果大正方形的面积是13,小正方形的面积是1,直角三角形较短的直角边为a,较长的直角边为b,那么(ab)2的值为

[  ]

A.13

B.19

C.25

D.169

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图是我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形、如果大正方形的面积13,小正方形的面积是1,直角三角形的短直角边为a,较长的直角边为b,那么(a+b)2的值为(  )
A、169B、25C、19D、13

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•六盘水)如图是我国古代数学家杨辉最早发现的,称为“杨辉三角”.它的发现比西方要早五百年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的!“杨辉三角”中有许多规律,如它的每一行的数字正好对应了(a+b)n(n为非负整数)的展开式中a按次数从大到小排列的项的系数.例如,(a+b)2=a2+2ab+b2展开式中的系数1、2、1恰好对应图中第三行的数字;再如,(a+b)3=a3+3a2b+3ab2+b3展开式中的系数1、3、3、1恰好对应图中第四行的数字.请认真观察此图,写出(a+b)4的展开式,(a+b)4=
a4+4a3b+6a2b2+4ab3+b4
a4+4a3b+6a2b2+4ab3+b4

查看答案和解析>>

科目:初中数学 来源: 题型:

探究题
如图是我国古代数学家杨辉最早发现的,称为“杨辉三角”.它的发现比西方要早五百年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的!“杨辉三角”中有许多规律,如它的每一行的数字正好对应了(a+b)n(n为非负整数)的展开式中按a次幂从大到小排列的项的系数.规定任何非零数的零次幂为1,如(a+b)0=1.例如,
(a+b)1=a+b展开式中的系数1、1恰好对应图中第二行的数字;
(a+b)2=a2+2ab+b2展开式中的系数1、2、1恰好对应图中第三行的数字;
(a+b)3=a3+3a2b+3ab2+b3展开式中的系数1、3、3、1恰好对应图中第四行的数字.
(1)请认真观察此图,写出(a+b)4的展开式,(a+b)4=
a4+4a3b+6a2b2+4ab3+b4
a4+4a3b+6a2b2+4ab3+b4

(2)类似地,请你探索并画出(a-b)0,(a-b)1,(a-b)2,(a-b)3的展开式中按a次幂从大到小排列的项的系数对应的三角形.
(3)探究解决问题:已知a+b=3,a2+b2=5,求ab的值.

查看答案和解析>>

科目:初中数学 来源:2012年初中毕业升学考试(贵州六盘水卷)数学(带解析) 题型:填空题

如图是我国古代数学家杨辉最早发现的,称为“杨辉三角”.它的发现比西方要早五百年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的!“杨辉三角”中有许多规律,如它的每一行的数字正好对应了(a+b)n(n为非负整数)的展开式中a按次数从大到小排列的项的系数。
例如,展开式中的系数1、2、1恰好对应图中第三行的数字;
再如,展开式中的系数1、3、3、1恰好对应图中第四行的数字。
请认真观察此图,写出(a+b)4的展开式,(a+b)4=    ▲   

查看答案和解析>>

科目:初中数学 来源:2012年初中毕业升学考试(贵州六盘水卷)数学(解析版) 题型:填空题

如图是我国古代数学家杨辉最早发现的,称为“杨辉三角”.它的发现比西方要早五百年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的!“杨辉三角”中有许多规律,如它的每一行的数字正好对应了(a+b)n(n为非负整数)的展开式中a按次数从大到小排列的项的系数。

例如,展开式中的系数1、2、1恰好对应图中第三行的数字;

再如,展开式中的系数1、3、3、1恰好对应图中第四行的数字。

请认真观察此图,写出(a+b)4的展开式,(a+b)4=    ▲   

 

查看答案和解析>>

同步练习册答案