如图,直线y=k1x+b(k1≠0)与双曲线(k2≠0)相交于A(1,m)、B(﹣2,﹣1)两点.
(1)求直线和双曲线的解析式.
(2)若A1(x1,y1),A2(x2,y2),A3(x3,y3)为双曲线上的三点,且x1<x2<0<x3,请直接写出y1,y2,y3的大小关系式.
(1)k2=2
(2)y2<y1<y3
解析试题分析:(1)将B坐标代入双曲线解析式求出k2的值,确定出反比例解析式,将A坐标代入反比例解析式求出m的值,确定出A的坐标,将A与B坐标代入直线解析式求出k1与b的值,即可确定出直线解析式;
(2)先根据横坐标的正负分象限,再根据反比例函数的增减性判断即可。
解:(1)∵双曲线经过点B(﹣2,﹣1),∴k2=2。
∴双曲线的解析式为:。
∵点A(1,m)在双曲线上,∴m=2,即A(1,2)。
由点A(1,2),B(﹣2,﹣1)在直线y=k1x+b上,得
,解得:。
∴直线的解析式为:y=x+1。
(2)∵A1(x1,y1),A2(x2,y2),A3(x3,y3)为双曲线上的三点,且x1<x2<0<x3,
∴A1与A2在第三象限,A3在第一象限,即y1<0,y2<0,y3>0。则y2<y1<y3。
科目:初中数学 来源: 题型:解答题
如图,已知点A(-4,2)、B( n,-4)是一次函数的图象与反比例函数图象的两个交点.
(1)求此反比例函数的解析式和点B的坐标;
(2)根据图象写出使一次函数的值小于反比例函数值的x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,在平面直角坐标系中,反比例函数(x>0)的图象和矩形ABCD的第一象限,AD平行于x轴,且AB=2,AD=4,点A的坐标为(2,6) .
(1)直接写出B、C、D三点的坐标;
(2)若将矩形向下平移,矩形的两个顶点恰好同时落在反比例函数的图象上,猜想这是哪两个点,并求矩形的平移距离和反比例函数的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,在平面直角坐标系xOy中,直线y=k1x+b交x轴于点A(-3,0),交y轴于点B(0,2),并与的图象在第一象限交于点C,CD⊥x轴,垂足为D,OB是△ACD的中位线。
(1)求一次函数与反比例函数的解析式;
(2)若点是点C关于y轴的对称点,请求出△的面积。
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,正比例函数的图象与反比例函数(k≠0)在第一象限的图象交于A点,过A点作x轴的垂线,垂足为M,已知△OAM的面积为1.
(1)求反比例函数的解析式;
(2)如果B为反比例函数在第一象限图象上的点(点B与点A不重合),且B点的横坐标为1,在x轴上找一点P,使PA+PB最小.求P点坐标?
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,在平面直角坐标系中,直线AB与y轴、x轴分别交于点A、点B,与双曲线交于点C(1,6)、D(3,n)两点,轴于点E,轴于点F.
(1)填空:,;
(2)求直线AB的解析式;
(3)求证:.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
某汽车油箱的容积为70升,小王把油箱注满油后准备驾驶汽车从县城到300千米外的省城接待客人,在接到客人后立即按原路返回,请回答下列问题:
(1)油箱注满油后,汽车能够行驶的总路程y(单位:千米)与平均耗油量x(单位:升/千米)之间有怎样的函数关系?
(2)如果小王以平均每千米耗油0.1升的速度驾驶汽车到达省城,在返程时由于下雨,小王降低了车速,此时每行驶1千米的耗油量增加了一倍,如果小王一直以此速度行驶,邮箱里的油是否够回到县城?如果不够用,至少还需加多少油?
查看答案和解析>>
科目:初中数学 来源: 题型:单选题
点到直线的距离是指 ( )
A.从直线外一点到这条直线的垂线 |
B.从直线外一点到这条直线的垂线段 |
C.从直线外一点到这条直线的垂线的长 |
D.从直线外一点到这条直线的垂线段的长 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com