按下面规则扩充新数:已有a和b两个数,可按规则c=ab+a+b扩充一个新数,而a,b,c三个数中任取两数,按规则又可扩充一个新数,…,每扩充一个新数叫做一次操作.现有数2和3.
①求按上述规则操作三次得到扩充的最大新数;
②能否通过上述规则扩充得到新数5183?并说明理由.
【答案】分析:①将2与3分别代入求解,再取其最大的两个值依次代入即可求得答案;
②找到规律:设扩充后的新数为x,则总可以表示为x+1=(a+1)m•(b+1)n,式中m、n为整数,即可得当a=2,b=3时,x+1=3m×4n,然后求解即可.
解答:解:①∵a=2,b=3,
c1=ab+a+b=6+2+3=11,
∴取3和11,
∴c2=3×11+3+11=47,
取11与47,
∴c3=11×47+11+47=575,
∴扩充的最大新数575;
②5183可以扩充得到.
∵c=ab+a+b=(a+1)(b+1)-1,
∴c+1=(a+1)(b+1),
取数a、c可得新数
d=(a+1)(c+1)-1=(a+1)(b+1)(c+1)(a+1)-1=(a+1)2(b+1),
即d+1=(a+1)2(b+1),
同理可得e=(b+1)(c+1)=(b+1)(a+1)-1,
∴e+1=(b+1)2(a+1),
设扩充后的新数为x,则总可以表示为x+1=(a+1)m•(b+1)n,式中m、n为整数,
当a=2,b=3时,x+1=3m×4n,
又∵5183+1=5184=34×43,
故5183可以通过上述规则扩充得到.
点评:此题考查了因式分解的应用,解题的关键是找到规律设扩充后的新数为x,则总可以表示为x+1=(a+1)m•(b+1)n,式中m、n为整数.