精英家教网 > 初中数学 > 题目详情

【题目】在等边△ABC外侧作直线AP,点B关于直线AP的对称点为D,连接BD,CD,其中CD交直线AP于点E.

(1)依题意补全图1;
(2)若∠PAB=30°,求∠ACE的度数;
(3)如图2,若60°<∠PAB<120°,判断由线段AB,CE,ED可以构成一个含有多少度角的三角形,并证明.

【答案】
(1)解:所作图形如图1所示:


(2)解:连接AD,如图1.

∵点D与点B关于直线AP对称,

∴AD=AB,∠DAP=∠BAP=30°,

∵AB=AC,∠BAC=60°,

∴AD=AC,∠DAC=120°,

∴2∠ACE+60°+60°=180°,

∴∠ACE=30°


(3)解:线段AB,CE,ED可以构成一个含有60°角的三角形.

证明:连接AD,EB,如图2.

∵点D与点B关于直线AP对称,

∴AD=AB,DE=BE,

∴∠EDA=∠EBA,

∵AB=AC,AB=AD,

∴AD=AC,

∴∠ADE=∠ACE,

∴∠ABE=∠ACE.

设AC,BE交于点F,

又∵∠AFB=∠CFE,

∴∠BAC=∠BEC=60°,

∴线段AB,CE,ED可以构成一个含有60°角的三角形.


【解析】(1)根据题意作出图形;(2)根据题意可得∠DAP=∠BAP=30°,然后根据AB=AC,∠BAC=60°,得出AD=AC,∠DAC=120°,最后根据三角形的内角和公式求解;(3)由线段AB,CE,ED可以构成一个含有60度角的三角形,连接AD,EB,根据对称可得∠EDA=∠EBA,然后证得AD=AC,最后即可得出∠BAC=∠BEC=60°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且AE=BD,
(1)当点E为AB的中点时,如图1,求证:EC=ED;

(2)当点E不是AB的中点时,如图2,过点E作EF∥BC,求证:△AEF是等边三角形;

(3)在第(2)小题的条件下,EC与ED还相等吗,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点A的横坐标为﹣1,点B在x轴的负半轴上,AB=AO,∠ABO=30°,直线MN经过原点O,点A关于直线MN的对称点A1在x轴的正半轴上,点B关于直线MN的对称点为B1 , 则∠AOM的度数为;点B1的纵坐标为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若点P(2m+4,3m+3)在x轴上,则点P的坐标为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,在平行四边形ABCD中,下列结论不一定正确的是( )

A. AB﹦CD B. 当AC⊥BD时,它是菱形

C. AC﹦BD D. 当∠ABC﹦90°时,它是矩形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,四边形OABC是平行四边形.直线L经过O、C两点.点A的坐标为(8,0),点B的坐标为(11,4),动点P在线段OA上从点O出发以每秒1个单位的速度向点A运动,同时动点Q从点A出发以每秒2个单位的速度沿A→B→C的方向向点C运动,过点PPM垂直于x轴,与折线OC﹣B相交于点M.当Q、M两点相遇时,P、Q两点停止运动,设点P、Q运动的时间为t秒(t>0).MPQ的面积为S.

(1)点C的坐标为 ,直线L的解析式为

(2)试求点Q与点M相遇前St的函数关系式,并写出相应的t的取值范围.

(3)试求题(2)中当t为何值时,S的值最大,并求出S的最大值.

(4)随着P、Q两点的运动,当点M在线段CB上运动时,设PM的延长线与直线L相交于点N.试探究:当t为何值时,QMN为等腰三角形?请直接写出t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算。
(1)解方程: =1﹣
(2)先化简,再求值: (9ab2﹣3)+(7a2b﹣2)+2(ab2+1)﹣2a2b,其中a、b满足(a+2)2+|b﹣3|=0.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用两个全等的直角三角形拼下列图形:①平行四边形(不包含菱形、矩形、正方形);②矩形;③菱形;④正方形;⑤等腰三角形.一定可以拼成的图形是_____________(填序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A、B都在数轴上,且AB=6
(1)点B表示的数是
(2)若点B以每秒2个单位的速度沿数轴向右运动,则2秒后点B表示的数是
(3)若点A、B都以每秒2个单位沿数轴向右运动,而点O不动,t秒后有一个点是一条线段的中点,求t.

查看答案和解析>>

同步练习册答案