精英家教网 > 初中数学 > 题目详情

如图,在平面直角坐标系中,二次函数的图象的顶点为D点,与y轴交于C点,与x轴交于A、B两点, A点在原点的左侧,B点的坐标为(3,0),OB=OC ,tan∠ACO=

(1)求这个二次函数的表达式.

(2)经过C、D两点的直线,与x轴交于点E,在该抛物线上是否存在这样的点F,使以点A、C、E、F为顶点的四边形为平行四边形?若存在,请求出点F的坐标;若不存在,请说明理由.

(3)若平行于x轴的直线与该抛物线交于M、N两点,且以MN为直径的圆与x轴相切,求该圆半径的长度.

(4)如图,若点G(2,y)是该抛物线上一点,点P是直线AG下方的抛物线上一动点,当点P运动到什么位置时,△APG的面积最大?求出此时P点的坐标和△APG的最大面积.

方法一:由已知得:C(0,-3),A(-1,0)   

将A、B、C三点的坐标代入得    

解得:                     

所以这个二次函数的表达式为:

方法二:由已知得:C(0,-3),A(-1,0)

设该表达式为:                

将C点的坐标代入得:                          

所以这个二次函数的表达式为:          

(注:表达式的最终结果用三种形式中的任一种都不扣分)

(2)

方法一:存在,F点的坐标为(2,-3)           

理由:易得D(1,-4),所以直线CD的解析式为:

∴E点的坐标为(-3,0)                              

由A、C、E、F四点的坐标得:AE=CF=2,AE∥CF

∴以A、C、E、F为顶点的四边形为平行四边形

∴存在点F,坐标为(2,-3)                   

方法二:易得D(1,-4),所以直线CD的解析式为:

∴E点的坐标为(-3,0)                        

∵以A、C、E、F为顶点的四边形为平行四边形

∴F点的坐标为(2,-3)或(2,3)或(-4,3)  

代入抛物线的表达式检验,只有(2,-3)符合

∴存在点F,坐标为(2,-3)                        

(3)如图,

①当直线MN在x轴上方时,设圆的半径为R(R>0),则N(R+1,R),

代入抛物线的表达式,解得

②当直线MN在x轴下方时,设圆的半径为r(r>0),

则N(r+1,-r),

代入抛物线的表达式,解得  

∴圆的半径为.  

(4)

过点P作y轴的平行线与AG交于点Q,

易得G(2,-3),直线AG为

设P(x),则Q(x,-x-1),PQ

              

时,△APG的面积最大

此时P点的坐标为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案