精英家教网 > 初中数学 > 题目详情
如图,以矩形ABCD的顶点A为原点,AD所在的直线为x轴,AB所在的直线为y轴,建立平面直角坐标系.点D的坐标为(8,0),点B的坐标为(0,6),点F在对角线AC上运动(点F不与点A、C重合),过点F分别作x轴、y轴的垂线,垂足为G、E.设四边形BCFE的面积为S1,四边形CDGF的面积为S2,△AFG的面积为S3

(1)试判断S1、S2,的关系,并加以证明;
(2)当S3:S1=1:3时,求点F的坐标;
(3)如图,在(2)的条件下,把△AEF沿对角线AC所在直线平移,得到△A’E’F’,且A’、F’两点始终在直线AC上,是否存在这样的点E’,使点E’到x轴的距离与到y轴的距离比是5:4.若存在,请求出点E’的坐标;若不存在,请说明理由.
(1)S1=S2;(2)F(4,3);(3)存在满足条件的E′坐标分别是( 6,) ()

试题分析:(1)两者应该相等,由于四边形ADCB是矩形,那么对角线平分矩形的面积,同理OF也平分矩形AEFG的面积,由此就不难得出S1=S2了;
(2)S3:S2=1;3,也就能得出SAGF:SADC=1:4,根据相似三角形的面积比等于相似比的平方,可得出OF:OC=1:2,即F为OC中点.由此可根据C、D的坐标直接求出F的坐标;
(3)由于A′F′始终在OC上,因此EE′所在的直线必平行于OC,可先求出直线EE′的解析式,然后根据E′横、纵坐标的比例关系来设出E′的坐标,代入直线EE′中即可求出E′A的坐标.
(1)S1=S2
∵FE⊥y轴,FG⊥x轴,∠BAD=90°,
∴四边形AEFG是矩形.
∴AE=GF,EF=AG.
∴SAEF=SAFG
同理SABC=SACD
∴SABC-SAEF=SACD-SAFG
即S1=S2
(2)∵FG∥CD,
∴△AFG∽△ACD.

∵CD=BA=6,AD=BC=8,
∴FG=3,AG=4.
∴F(4,3);
(3)∵△A′E′F′是由△AEF沿直线AC平移得到的,且A′、F′两点始终在直线AC上,
∴点E′在过点E(0,3)且与直线AC平行的直线l上移动.
∵直线AC的解析式是y=x,
∴直线L的解析式是y=x+3.
设点E′为(x,y),
∵点E′到x轴的距离与到y轴的距离比是5:4,
∴|y|:|x|=5:4.

∴E′(6,7.5);
∴存在满足条件的E′坐标分别是( 6,) ().
点评:此类问题难度较大,在中考中比较常见,一般在压轴题中出现,需特别注意.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

已知点M(3,﹣2),将它先向左平移4个单位,再向上平移3个单位后得到点N,则点N的坐标是   

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知点P(a,b)在第四象限,则点Q(b,-a)在第______象限.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

点P(3,2)关于x轴的对称点的坐标是(   )
A.(3,2)B.(-3,2)C.(-3,-2)D.(3,-2)

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

将等腰直角三角形AOB按如图所示放置,然后绕点O逆时针旋转90°至的位置,点B的横坐标为2,则点的坐标为
A.(1,1)B.()C.(-1,1)D.()

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在平面直角坐标系中,已知点A(,0),B(0,),如果将线段AB绕点B顺时针旋转90°至CB,那么点C的坐标是
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,正方形ABCD的顶点B、C都在直角坐标系的x轴上,若点A的坐标是(-1,4),则点C的坐标是   

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1,A2,A3,A4,…表示,则顶点A55的坐标是
 
A.(13,13)B.(﹣13,﹣13)C.(14,14)D.(﹣14,﹣14)

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

将点P(-2,3)向右平移3个单位,再向下平移5 个单位,所得的点的坐标为        

查看答案和解析>>

同步练习册答案