精英家教网 > 初中数学 > 题目详情
如图,已知反比例函数y=
m
x
(x>0)的图象与一次函数y=-
1
2
x+
5
2
的图象交于A、B两点,点C的坐标为(1,
1
2
),连接AC,AC平行于y轴.
(1)求反比例函数的解析式及点B的坐标;
(2)现有一个直角三角板,让它的直角顶点P在反比例函数图象上的A、B之间的部分滑动(不与A、B重合),两直角边始终分别平行于x轴、y轴,且与线段AB交于M、N两点,试判断P点在滑动过程中△PMN是否与△CAB总相似,简要说明判断理由.精英家教网
分析:(1)点C的坐标为(1,
1
2
),AC平行于y轴.因而A点的横坐标是1,把x=1代入一次函数y=-
1
2
x+
5
2
的解析式,就可以求出A点的坐标,代入反比例函数y=
m
x
(x>0)的解析式,就可以求出m的值.解一次函数与反比例函数的解析式组成的方程组就可以解得B点的坐标;
(2)因为B、C两点纵坐标相等,所以BC∥x轴,又因为AC∥y轴,所以△CAB为直角三角形,同时△PMN也是直角三角形,AC∥PM,BC∥PN,因而△PMN∽△CAB.
解答:解:(1)由C(1,
1
2
)得A(1,2),代入反比例函数y=
m
x
中,得m=2,
∴反比例函数解析式为:y=
2
x
(x>0)
,(2分)
解方程组
y=-
1
2
x+
5
2
y=
2
x

-
1
2
x+
5
2
=
2
x
化简得:x2-5x+4=0(x-4)(x-1)=0,
解得x1=4,x2=1,
∴B(4,
1
2
);(5分)

(2)无论P点在AB之间怎样滑动,△PMN与△CAB总能相似.
∵B、C两点纵坐标相等,∴BC∥x轴,
∵AC∥y轴,∴△CAB为直角三角形,
同时△PMN也是直角三角形,AC∥PM,BC∥PN,∴△PMN∽△CAB.(8分)
(在理由中只要能说出BC∥x轴,∠ACB=90°即可得分)
点评:本题主要考查了待定系数法求函数解析式,以及函数交点坐标的求法.同时同学们要掌握解方程组的方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知反比例函数y=
m
x
图象与一次函数y=kx+b的图象均经过A(-1,4)和B(a,
4
5
)两点,
(1)求B点的坐标及两个函数的解析式;
(2)若一次函数y=kx+b的图象与x轴交于点C,求C点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知反比例函数y=
kx
(k>0)的图象经过点A(2,m),过点A作AB⊥x轴于点B,且S△AOB=3.若一次函数y=ax+1的图象经过点A,并且与x轴相交于点C,求AO:AC的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知反比例函数y=
kx
的图象与一次函数y=ax+b的图象交于M(2,m)和N(-1,-4)两点.
(1)求这两个函数的解析式;
(2)求△MON的面积;
(3)请判断点P(4,1)是否在这个反比例函数的图象上,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知反比例函数y1=
kx
和一次函数y2=ax+b的图象相交于点A和点D,且点A的横坐标为1,点D的纵坐标为-1.过点A作AB⊥x轴于点B,△AOB的面积为1.
(1)求反比例函数和一次函数的解析式.
(2)若一次函数y2=ax+b的图象与x轴相交于点C,求∠ACO的度数.
(3)结合图象直接写出:当y1>y2时,x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知反比例函数y=
k
x
的图象经过第二象限内的点A(-1,m),AB⊥x轴于点B,△AOB的面积为2.若直线y=ax+b经过点A,并且经过反比例函数y=
k
x
的图象上另一点C(n,一2).
(1)求直线y=ax+b的解析式;
(2)设直线y=ax+b与x轴交于点M,求AM的长;
(3)在双曲线上是否存在点P,使得△MBP的面积为8?若存在请求P点坐标;若不存在请说明理由.

查看答案和解析>>

同步练习册答案