【题目】一个机器人从数轴原点出发,沿数轴正方向,以每前进3步后退2步的程序运动。设该机器人每秒钟前进或后退1步,并且每步的距离是1个单位长,表示第秒时机器人在数轴上的位置所对应的数。给出下列结论:①;②;③;④。其中,正确的结论的序号是( )
A.①③B.②③C.①②③D.①②④
科目:初中数学 来源: 题型:
【题目】阅读下列材料:
我们知道|x|的几何意义是:在数轴上数x对应的点与原点O的距离,这个结论可以推广为:|x1﹣x2|表示在数轴上数x1,x2对应点之间的距离.
例:解方程|x﹣1|+|x+2|=5.
由绝对值的几何意义知,该方程表示:求在数轴上与1和﹣2的距离之和为5的点对应的数,而在数轴上,1和﹣2的距离为|1﹣(﹣2)|=3,满足方程的x对应点在1的右边或﹣2的左边,若x对应点在1的右边,
由图可知看出x=2;同理,若x对应点在﹣2的左边,可得x=﹣3,故原方程的解是x=2或x=﹣3.
参考阅读材料,解答下列问题:
(1)方程|x﹣2|+|x+3|=7的解为 .
(2)代数式|x﹣1|+|x+4|的最小值为 .
(3)如图,点A、B、C是数轴上的三点,A点表示数是-3,B点表示数是-1,C点表示数是6,点A,B,C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和3个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB= ,AC= .(用含t的代数式表示)
(4)在(3)的条件下,若mAC﹣4AB的值不随着时间t的变化而改变,试确定m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】A、B、C、D四个车站的位置如图所示,A、B两站之间的距离AB=a﹣b,B、C两站之间的距离BC=2a﹣b,B、D两站之间的距离BD=a﹣2b﹣1.求:
(1)A、C两站之间的距离AC;
(2)若A、C两站之间的距离AC=180km,求C、D两站之间的距离CD.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题情境
(1)如图1,已知AB∥CD,∠PBA=125°,∠PCD=155°,求∠BPC的度数.
佩佩同学的思路:过点P作PG∥AB,进而PG∥CD,由平行线的性质来求∠BPC,求得∠BPC=
问题迁移
(2)图2.图3均是由一块三角板和一把直尺拼成的图形,三角板的两直角边与直尺的两边重合,∠ACB=90°,DF∥CG,AB与FD相交于点E,有一动点P在边BC上运动,连接PE,PA,记∠PED=∠α,∠PAC=∠β.
①如图2,当点P在C,D两点之间运动时,请直接写出∠APE与∠α,∠β之间的数量关系;
②如图3,当点P在B,D两点之间运动时,∠APE与∠α,∠β之间有何数量关系?请判断并说明理由;
拓展延伸
(3)当点P在C,D两点之间运动时,若∠PED,∠PAC的角平分线EN,AN相交于点N,请直接写出∠ANE与∠α,∠β之间的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校开展“青少年科技创新比赛”活动,“喜洋洋”代表队设计了一个遥控车沿直线轨道AC做匀速直线运动的模型.甲、乙两车同时分别从A,B两处出发,沿轨道到达C处,B在AC上,甲的速度是乙的速度的1.5倍,设t(分)后甲、乙两遥控车与B处的距离分别为d1,d2,则d1,d2与t的函数关系如图,试根据图象解决下列问题:
(1)填空:乙的速度v2= 米/分;
(2)写出d1与t的函数关系式:
(3)若甲、乙两遥控车的距离超过10米时信号不会产生相互干扰,试探求什么时间两遥控车的信号不会产生相互干扰?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点O是等边△ABC内一点,D是△ABC外的一点,∠AOB=110°,∠BOC=,△BOC≌△ADC,∠OCD=60°,连接OD.
(1)求证:△OCD是等边三角形;
(2)当α=150°时,试求证:△AOD是直角三角形;
(3)△AOD能否为等边三角形?为什么?
(4)探究:当α为多少度时,△AOD是等腰三角形.(直接写出答案)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】计算下列各题:
(1)4+(-2)=_____________; (2)-3-(-2)=__________;
(3)-2×5=_____________; (4)-6÷(-3)=__________;
(5)=_____________; (6)=__________;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校八年级甲,乙两班各有名学生,为了解这两个班学生身体素质情况,进行了抽样调查.从这两个班各随机抽取名学生进行身体素质测试,测试成绩如下:
甲班
乙班
整理上面数据,得到如下统计表:
样本数据的平均数、众数.中位数如下表所示:
根据以上信息,解答下列问题:
(1)求表中的值
(2)表中的值为( )
(3)若规定测试成绩在分以上(含分)的学生身体素质为优秀,请估计乙班名学生中身体素质为优秀的学生的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,菱形ABCD,AB=4,∠ADC=120o,连接对角线AC、BD交于点O,
(1)如图2,将△AOD沿DB平移,使点D与点O重合,求平移后的△A′BO与菱形ABCD重合部分的面积.
(2)如图3,将△A′BO绕点O逆时针旋转交AB于点E′,交BC于点F,
①求证:BE′+BF=2,
②求出四边形OE′BF的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com