精英家教网 > 初中数学 > 题目详情

【题目】如图,A,B,C三点在⊙O上,且AB是⊙O的直径,半径OD⊥AC,垂足为F,若∠A=30,OF=3,则OA=_____,AC=_____,BC=_____.

【答案】6, 6, 6

【解析】

先根据直角三角形的性质求出OA的长,故可得出AB的长,再根据圆周角定理求出∠ACB的度数,由直角三角形的性质求出AB的长,在Rt△ABC中由勾股定理即可求出AC的长.

解:∵OD⊥AC,∠A=30°,OF=3,
∴∠AFO=90°,
∴OA=2OF=2×3=6,
∴AB=2OA=2×6=12,
∵AB是⊙O的直径,
∴∠ACB=90°,
∴BC=AB=×12=6,
Rt△ABC中,∵AB=12,BC=6,
∴AC==6
故答案为:6,6,6.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,将△OAB绕点O逆时针旋转80°得到△OCD,点A与点C是对应点.

(1)画出△OAB关于点O对称的图形(保留画图痕迹,不写画法);

(2)若∠A=110°,∠D=40°,求∠AOD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+c的对称轴是x=﹣1,且过点(,0).有下列结论:①abc>0;②25a﹣10b+4c=0;③a﹣2b+4c=0;④a﹣b≥m(am﹣b);⑤3b+2c>0;其中所有正确的结论是_____(填写正确结论的序号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠C=90°,AC=BC=10cm,长为4cm的线段DE在边AC上,且点D与点A重合,点FDE的中点,线段DE从点A出发,沿AC方向向点C匀速运动,直到点E与点C重合,速度1cm/s。过点FPF⊥AC,交AB于点P,过点PPQ//AC,交BC于点Q,连接PD,PE,QE,设线段DE的运动时间为t(s).(0≤t≤6)

(1)请分别用含有t的代数式表示线段PF、BQ

(2)t为何值时,四边形PFCQ为正方形?

(3)设四边形PDEQ的面积为y(cm)请求出yt之间的函数关系式,并求出当t为何值时,四边形PDEQ的面积最大,最大是多少?

(4)是否存在某一时刻t,使得EP平分∠AEQ?若存在,求出此时t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学为庆祝建党90周年举行唱红歌比赛,已知10位评委给某班的打分是:89689106897

1)求这组数据的极差:

2)求这组数据的众数;

3)比赛规定:去掉一个最髙分和一个最低分,剩下分数的平均数作为该班的最后得分.求该班的最后得分.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形网格中,△ABC和△DEF相似,则关于位似中心与相似比叙述正确的是(  )

A. 位似中心是点B,相似比是2:1 B. 位似中心是点D,相似比是2:1

C. 位似中心在点G,H之间,相似比为2:1 D. 位似中心在点G,H之间,相似比为1:2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】函数y=ax2+bx+a+ba≠0)的图象可能是()

A. B.

C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,EAB上一点,连接DE.过点AAFDE,垂足为F,⊙O经过点CDF,与AD相交于点G

(1)求证:△AFG∽△DFC

(2)若正方形ABCD的边长为4,AE=1,求O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在△ABC中,AB=AC,DEBC,点F在边AC上,DFBE相交于点G,且∠EDF=ABE.

求证:(1)DEF∽△BDE;(2)DGDF=DBEF.

查看答案和解析>>

同步练习册答案