精英家教网 > 初中数学 > 题目详情

如下图,在正方形ABCD中,点M是AB的中点,且BN=BC,ME⊥DN于E,说明ME2=DE·NE.

答案:
解析:

  思路与技巧:要说明ME2=DE·NE,该结构形式暗示着射影定理的运用,关键要证出∠DMN=90°.由已知条件,易证△ADM∽△BMN得∠AMD=∠BNM,又∠BMN+∠BNM=90°,易得∠DMN=90°,从而获证.

  评析:对于几何说理题常用“两头凑”的方法,即从已知到求证,从求证到已知的双方向逐步推理的过程.


练习册系列答案
相关习题

科目:初中数学 来源:同步题 题型:解答题

如下图,在△ABC中,AB=AC,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是BC的中点,E,F。
(1)试说明:DE=DF;
(2)只添加一个条件,使四边形EDFA是正方形,请你至少写出两种不同的添加方法。(不另外添加辅助线,无需证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如下图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E.

(1)求证:四边形ADCE为矩形;

(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如下图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E,

(1)求证:四边形ADCE为矩形;

(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如下图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E,

(1)求证:四边形ADCE为矩形;

(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.

查看答案和解析>>

同步练习册答案