【题目】某班“数学兴趣小组”对函数y=x2﹣2|x|的图象和性质进行了探究,探究过程如下,请补充完整.
(1)自变量x的取值范围是全体实数,x与y的几组对应值列表:
x | … | ﹣3 | - | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | … | |
y | … | 3 | m | ﹣1 | 0 | ﹣1 | 0 | 3 | … |
其中m= .
(2)根据上表数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分;
(3)观察函数图象,写出2条函数的性质;
(4)进一步探究函数图象发现:
①函数图象与x轴有个交点,所对应的方程x2﹣2|x|=0有个实数根;
②方程x2﹣2|x|=2有个实数根.
【答案】
(1)0
(2)解:根据给定的表格中数据描点画出图形,如图1所示
(3)解:观察函数图象,可得出:①函数图象关于y轴对称,②当x>1时,y随x的增大而增大
(4)3;3;2
【解析】解:(1)当x=﹣2时,y=(﹣2)2﹣2×|﹣2|=0,
∴m=0,
故答案为:0.(4)①观察函数图象可知:当x=﹣2、0、2时,y=0,
∴该函数图象与x轴有3个交点,
即对应的方程x2﹣2|x|=0有3个实数根.
故答案为:3;3.
②在图中作直线y=2,如图2所示.
观察函数图象可知:函数y=x2﹣2|x|的图象与y=2只有2个交点.
故答案为:2.
(1)将x=﹣2代入函数解析式中求出y值,即可得出结论;(2)根据表格数据,描点补充完图形;(3)根据函数图象,寻找出对称轴以及函数的单调区间,此题得解;(4)①观察函数图象,根据函数图象与x轴有3个交点,即可得出结论;②画出直线y=2,观察图形,可得出函数y=x2﹣2|x|的图象与y=2只有2个交点,此题得解.
科目:初中数学 来源: 题型:
【题目】已知等边△ABC的高为6,在这个三角形所在的平面内有一点P,若点P到直线AB的距离是1,点P到直线AC的距离是3,则点P到直线BC的距离可能是_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,菱形ABCD中,对角线AC , BD相交于点O , 且AC=6cm,BD=8cm,动点P , Q分别从点B , D同时出发,运动速度均为1cm/s,点P沿B→C→D运动,到点D停止,点Q沿D→O→B运动,到点O停止1s后继续运动,到点B停止,连接AP , AQ , PQ . 设△APQ的面积为y(cm2)(这里规定:线段是面积0的几何图形),点P的运动时间为x(s).
(1)填空:AB=cm,AB与CD之间的距离为cm;
(2)当4≤x≤10时,求y与x之间的函数解析式;
(3)直接写出在整个运动过程中,使PQ与菱形ABCD一边平行的所有x的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在锐角△ABC中,∠ABC=60°,BC=2cm,BD平分∠ABC交AC于点D,点M,N分别是BD和BC边上的动点,则MN+MC的最小值是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】用适当的方法解下列方程:
(1)2x2﹣8x=0.
(2)x2﹣3x﹣4=0.
求出抛物线的开口方向、对称轴、顶点坐标.
(3)y= x2﹣x+3(公式法).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了迎接运动会,某校八年级学生开展了“短跑比赛”。甲、乙两人同时从A地出发,沿同一条道路去B地,途中都使用两种不同的速度与。
甲前一半的路程使用速度,另一半的路程使用速度;乙前一半的时间用速度,另一半的时间用速度。
(1)甲、乙二人从A地到达B地的平均速度分别为;则___________,____________
(2)通过计算说明甲、乙谁先到达B地?为什么?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com