精英家教网 > 初中数学 > 题目详情
13.如图,?OABC的顶点B、C在第一象限,点A的坐标为(3,0),D为边AB的中点,反比例函数y=$\frac{k}{x}$(k>0)的图象经过点C、D两点,若∠COA=60°,则k的值为4$\sqrt{3}$.

分析 作CE⊥x轴于点E,则∠CEO=90°,过B作BF⊥x轴于F,过D作DM⊥x轴于M,设C的坐标为(x,$\sqrt{3}$x),表示出D的坐标,代入反比例函数的解析式,求出k即可.

解答 解:作CE⊥x轴于点E,则∠CEO=90°,过B作BF⊥x轴于F,过D作DM⊥x轴于M,
则BF=CE,DM∥BF,BF=CE,
∵D为AB的中点,
∴AM=FM,
∴DM=$\frac{1}{2}$BF,
∵∠COA=60°,
∴∠OCE=30°,
∴OC=2OE,CE=$\sqrt{3}$OE,
∴设C的坐标为(x,$\sqrt{3}$x),
∴AF=OE=x,CE=BF=$\sqrt{3}$x,OE=AF=x,DM=$\frac{\sqrt{3}}{2}$x,
∵四边形OABC是平行四边形,A(3,0),
∴OF=3+x,OM=3+$\frac{1}{2}$x,
即D点的坐标为(3+$\frac{1}{2}$x,$\frac{\sqrt{3}}{2}$x),
把C和D的坐标代入y=$\frac{k}{x}$得:k=x•$\sqrt{3}$x,k=(3+$\frac{1}{2}$x)•$\frac{\sqrt{3}}{2}$x,
解得:x=0或2(x=0不符合题意舍去),
k=4$\sqrt{3}$,
故答案为:4$\sqrt{3}$.

点评 本题考查了平行四边形的性质,待定系数法求函数的解析式,解直角三角形的应用,能得出关于x、k的方程是解此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

3.解下列方程组:
(1)$\left\{\begin{array}{l}{y=2x-1}\\{x+2y=-7}\end{array}\right.$
(2)$\left\{\begin{array}{l}{x-2y=0}\\{3x+2y=12}\end{array}\right.$
(3)$\left\{\begin{array}{l}{2x+3y=7}\\{4x-5y=3}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.某数学老师为了了解学生在数学学习中常见错误的纠正情况,收集整理了学生在作业和考试中的常见错误,编制了10道选择题,每题3分,对他所教的初三(1)班(2)班进行了检测.如图表示从两班各随机抽取的10名学生的得分情况:
(1)利用图中提供的信息,补全下表:
班级平均数(分)中位数(分)众数(分)
(1)班24 2424 
(2)班   2424    21
(2)若把24分以上(含24分)记为”优秀”,两班各50名学生,请估计两班各有多少名学生成绩优秀;
(3)观察图中数据分布情况,请通过计算说明哪个班的学生纠错的得分情况更稳定.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.已知:在△ABC中,AB=AC.
(1)尺规作图:作△ABC的角平分线AD,延长AD至E点,使得DE=AD;(不要求写作法,保留作图痕迹)
(2)在(1)的条件下,连接BE,CE,求证:四边形ABEC是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.五一节,某校数学兴趣小组的同学相约去东台西溪“海春轩塔”参观,并测量其高度.如图,塔身BD与地面垂直,他们先在A处测得塔顶端点D的仰角为45°,再沿着BA的方向后退16cm至C处,测得塔顶端点D的仰角为30°,求“海春轩塔”BD的高度.($\sqrt{3}$≈1.73,结果保留一位小数)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.(1)计算:($\frac{1}{2}$)-1+($\sqrt{2016}$-2sin60°)0-|1-$\sqrt{3}$|
(2)解方程:$\frac{6}{x}$-$\frac{1}{x-2}$=1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.在Rt△ABC中,∠C=90°,AC=1,将△ABC绕点A逆时针旋转,得到△APQ,点C的对应点Q落在AB边上.连接BP,过点P作PH垂直于射线CA,垂足为H.
(1)如图1,若点H与点A重合,求∠BPQ的度数;
(2)如图2,若点H在CA边上(不与点A重合),BC=x,请用含x的代数式表示AH;
(3)若∠APB=∠PAH,求AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.已知抛物线y=ax2+bx+c的图象如图所示,则直线y=ax-b一定不经过(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.某一隧道内设双行线公路,其截面由一长方形和一抛物线构成,如图所示,为保证安全,要求行驶车辆顶部(设为平顶)与隧道顶部在竖直方向上高度之差至少要有0.5m,若行车道总宽度AB为6m,请计算车辆经过隧道时的限制高度是多少米?(精确到0.1m)

查看答案和解析>>

同步练习册答案