【题目】(定义[a,b,c]为函数的特征数,下面给出特征数为 [2m,1-m,-1-m]的函数的一些结论:
①当m=-3时,函数图象的顶点坐标是(,);
②当m>0时,函数图象截x轴所得的线段长度大于;
③当m<0时,函数在时,y随x的增大而减小;
④当m≠0时,函数图象经过x轴上一个定点.
其中正确的结论有________ .(只需填写序号)
【答案】①②④.
【解析】
试题因为函数y=ax2+bx+c的特征数为[2m,1﹣m,﹣1﹣m];
①当m=﹣3时,y=﹣6x2+4x+2=﹣6(x﹣)2+,顶点坐标是(,);此结论正确;
②当m>0时,令y=0,有2mx2+(1﹣m)x+(﹣1﹣m)=0,解得x=,x1=1,x2=,
|x2﹣x1|=>,所以当m>0时,函数图象截x轴所得的线段长度大于,此结论正确;
③当m<0时,y=2mx2+(1﹣m)x+(﹣1﹣m) 是一个开口向下的抛物线,其对称轴是:,在对称轴的右边y随x的增大而减小.因为当m<0时,=>,即对称轴在x=右边,因此函数在x=右边先递增到对称轴位置,再递减,此结论错误;
④当x=1时,y=2mx2+(1﹣m)x+(﹣1﹣m)=2m+(1﹣m)+(﹣1﹣m)=0 即对任意m,函数图象都经过点(1,0)那么同样的:当m=0时,函数图象都经过同一个点(1,0),当m≠0时,函数图象经过同一个点(1,0),故当m≠0时,函数图象经过x轴上一个定点此结论正确.
根据上面的分析,①②④都是正确的,③是错误的.
故答案是①②④.
科目:初中数学 来源: 题型:
【题目】如图1,抛物线与轴交于,两点,过点的直线分别与轴及抛物线交于点
(1)求直线和抛物线的表达式
(2)动点从点出发,在轴上沿的方向以每秒1个单位长度的速度向左匀速运动,设运动时间为秒,当为何值时,为直角三角形?请直接写出所有满足条件的的值.
(3)如图2,将直线沿轴向下平移4个单位后,与轴,轴分别交于,两点,在抛物线的对称轴上是否存在点,在直线上是否存在点,使的值最小?若存在,求出其最小值及点,的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】①当a=2,b=﹣3时,分别求代数式a2﹣2ab+b2和(a﹣b)2的值.
②当a=﹣,b=﹣2.25时,分别求代数式a2﹣2ab+b2和(a﹣b)2的值.
③猜想这两个代数式的值有何关系?
④根据猜想用简便方法算出当a=2018,b=2021时,代数式a2﹣2ab+b2的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知函数y=ax2+bx+c(a≠0)的图象如图,给出下列4个结论:①abc>0; ②b2>4ac; ③4a+2b+c>0;④2a+b=0.其中正确的有( )个.
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是某小组做用频率估计概率“的实验时,绘出的某一结果出现的频率折线图,则符合这一结果的实验可能是( )
A. 抛一枚硬币,出现正面朝上
B. 从一个装有2个红球1个黑球的袋子中任取一球,取到的是黑球
C. 一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃
D. 掷一枚均匀的正六面体骰子,出现3点朝上
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】己知二次函数y=ax2+bx+c的y与x的部分对应值如下表;
x | -1 | 0 | 1 | 3 |
y | -3 | 1 | 3 | 1 |
下列结论:①抛物线的开口向下;②其图象的对称轴为x=1;③当x﹤l时,函数值y随x 的增大而增大;④方程ax2+bx+c=0有一个根大于4.其中正确的结论有( )
A. 4个B. 1个C. 3个D. 2个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,AB=10cm,BC=8cm,点P从点A沿AC向点C以1cm/s的速度运动,同时点Q从点C沿CB向点B以2cm/s的速度运动(点Q运动到点B停止),在运动过程中,四边形PABQ的面积最小值为()cm2.
A. 19 B. 16 C. 15 D. 12
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,D是BC上一点,E是AC上一点,点G在BE上,联结DG并延长交AE于点F,∠BGD=∠BAD=∠C.
(1)求证:;
(2)如果∠BAC=90°,求证:AG⊥BE.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com