精英家教网 > 初中数学 > 题目详情
(2000•海南)如图,CB是半圆的直径,AC与半圆相切于C点,AB与半圆相交于D点,在AC上任取一点E,连接BE交半圆于F点.求证:AB•BD=EB•BF.

【答案】分析:本题解法较多,提供两种作为参考;
(1)连接CD、CF;由圆周角定理,易知CF⊥BE,CD⊥AB;在Rt△CBE、Rt△CBA中,由射影定理可知:AB•BD及BE•BF正好都等于BC2,由此得解.
(2)将所求的乘积式化为比例式,然后证线段所在的三角形相似,即连接DF、CD,证△BDF∽△BEA.
解答:证明:证法一:连接CD、CF;
∵BC是直径,
∴∠CDB=90°,∠CFB=90°;(4分)
又∵AC与圆相切于C点,CB是圆的直径,
∴∠ACB=90°;(5分)
在Rt△ABC中,BC2=BD•BA,在Rt△EBC中,BC2=BF•BE;(7分)
∴BD•BA=BF•BE,即AB•BD=EB•BF.(8分)

证法二:连接CD、DF;(1分)
∵∠CBE=∠CBF=∠CDF,(2分)
又∵AC切⊙O于C,CB是半圆O的直径,
∴∠ACB=∠BDC=90°;(3分)
∴∠AEB=90°+∠CBE=90°+∠CDF=∠BDF;(4分)
又∵∠DBF=∠EBA(同角)(5分)
∴△DBF∽△EBA,(6分)
∴BD:EB=BF:AB,(7分)
∴AB•BD=EB•BF.(8分)
点评:此题主要考查的是圆周角定理、切线的性质、直角三角形的性质以及相似三角形的判定和性质.
练习册系列答案
相关习题

科目:初中数学 来源:2000年全国中考数学试题汇编《图形认识初步》(01)(解析版) 题型:解答题

(2000•海南)如图所示,在平面直角坐标系中,第一象限的角平分线OM与反比例函数的图象相交于点M,已知OM的长是2
(1)求点M的坐标;
(2)求此反比例函数的关系式.

查看答案和解析>>

科目:初中数学 来源:2000年全国中考数学试题汇编《反比例函数》(01)(解析版) 题型:解答题

(2000•海南)如图所示,在平面直角坐标系中,第一象限的角平分线OM与反比例函数的图象相交于点M,已知OM的长是2
(1)求点M的坐标;
(2)求此反比例函数的关系式.

查看答案和解析>>

科目:初中数学 来源:2000年海南省中考数学试卷(解析版) 题型:解答题

(2000•海南)如图所示,在平面直角坐标系中,第一象限的角平分线OM与反比例函数的图象相交于点M,已知OM的长是2
(1)求点M的坐标;
(2)求此反比例函数的关系式.

查看答案和解析>>

科目:初中数学 来源:2000年全国中考数学试题汇编《三角形》(01)(解析版) 题型:选择题

(2000•海南)如图,E为矩形ABCD的边CD上的一点,AB=AE=4,BC=2,则∠BEC是( )

A.15度
B.30度
C.60度
D.75度

查看答案和解析>>

同步练习册答案