精英家教网 > 初中数学 > 题目详情
(2012•铜仁地区)以边长为2的正方形的中心O为端点,引两条相互垂直的射线,分别与正方形的边交于A、B两点,则线段AB的最小值是
2
2
分析:证△COA≌△DOB,推出等腰直角三角形AOB,求出AB=
2
OA,得出要使AB最小,只要OA取最小值即可,当OA⊥CD时,OA最小,求出OA的值即可.
解答:解:
∵四边形CDEF是正方形,
∴∠OCD=∠ODB=45°,∠COD=90°,OC=OD,
∵AO⊥OB,
∴∠AOB=90°,
∴∠COA+∠AOD=90°,∠AOD+∠DOB=90°,
∴∠COA=∠DOB,
∵在△COA和△DOB中
∠OCA=∠ODB
OC=OD
∠AOC=∠DOB

∴△COA≌△DOB,
∴OA=OB,
∵∠AOB=90°,
∴△AOB是等腰直角三角形,
由勾股定理得:AB=
OA2+OB2
=
2
OA,
要使AB最小,只要OA取最小值即可,
根据垂线段最短,OA⊥CD时,OA最小,
∵正方形CDEF,
∴FC⊥CD,OD=OF,
∴CA=DA,
∴OA=
1
2
CF=1,
即AB=
2

故答案为:
2
点评:本题考查了勾股定理,全等三角形的性质和判定,正方形的性质,垂线段最短等知识点的应用,关键是求出AB=
2
OA和得出OA⊥CD时OA最小,题目具有一定的代表性,有一定的难度.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•铜仁地区)某中学足球队的18名队员的年龄情况如下表:
年龄(单位:岁) 14 15 16 17 18
人数 3 6 4 4 1
则这些队员年龄的众数和中位数分别是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•铜仁地区)如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若BM+CN=9,则线段MN的长为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•铜仁地区)(1)化简:(
1
x+1
-
1
x-1
2
x2-1

(2)某市计划在新竣工的矩形广场的内部修建一个音乐喷泉,要求音乐喷泉M到广场的两个入口A、B的距离相等,且到广场管理处C的距离等于A和B之间距离的一半,A、B、C的位置如图所示,请在原图上利用尺规作图作出音乐喷泉M的位置,(要求:不写已知、求作、作法和结论,保留作图痕迹,必须用铅笔作图)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•铜仁地区)如图,已知⊙O的直径AB与弦CD相交于点E,AB⊥CD,⊙O的切线BF与弦AD的延长线相交于点F.
(1)求证:CD∥BF;
(2)若⊙O的半径为5,cos∠BCD=
45
,求线段AD的长.

查看答案和解析>>

同步练习册答案