精英家教网 > 初中数学 > 题目详情

如图,Rt△ABC中,∠C=90°,AC=3,BC=4.点M在AB边上以1单位长度/秒的速度从点A向点B运动,运动到点B时停止.连接CM,将△ACM沿着CM对折,点A的对称点为点A′.
(1)当CM与AB垂直时,求点M运动的时间;
(2)当点A′落在△ABC的一边上时,求点M运动的时间.

解:(1)∵Rt△ABC中,∠C=90°,CM⊥AB,
∴∠A=∠A,∠AMC=∠ACB=90°,
∴△ACM∽△ABC,

∵AC=3,BC=4,
∴AB==5,
∴AM==
∴点M运动的时间为:

(2)①如图1,当点A′落在AB上时,
此时CM⊥AB,
则点M运动的时间为:
②如图2,当点A′落到BC上时,CM是∠ACB平分线,
过点M作ME⊥BC于点E,作MF⊥AC于点F,
∴ME=MF,
∵S△ABC=S△ACM+S△BCM
AC•BC=AC•MF+BC•ME,
×3×4=×3×MF+×4×MF,
解得:MF=
∵∠C=90°,
∴MF∥BC,
∴△AMF∽△ABC,


解得:AM=
综上可得:当点A′落在△ABC的一边上时,点M运动的时间为:
分析:(1)由Rt△ABC中,∠C=90°,CM与AB垂直,易证得△ACM∽△ABC,然后由相似三角形的对应边成比例,即可求得AM的长,即可得点M运动的时间;
(2)分别从当点A′落在AB上时与当点A′落在BC上时去分析求解即可求得答案.
点评:此题考查了相似三角形的判定与性质、折叠的性质以及勾股定理等知识.此题难度较大,注意掌握数形结合思想与分类讨论思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、如图,Rt△ABC中,∠ACB=90°,∠CAB=30°,用圆规和直尺作图,用两种方法把它分成两个三角形,且要求其中一个三角形是等腰三角形.(保留作图痕迹,不要求写作法和证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,Rt△ABC中,∠ACB=90°,tanB=
34
,D是BC点边上一点,DE⊥AB于E,CD=DE,AC+CD=18.
(1)求BC的长(2)求CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABC中,∠C=90°,BC=3,AC=4,若△ABC∽△BDC,则CD=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABC中,∠C=90°,△ABC的内切圆⊙0与BC、CA、AB分别切于点D、E、F.
(1)若BC=40cm,AB=50cm,求⊙0的半径;
(2)若⊙0的半径为r,△ABC的周长为ι,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABC中,∠ABC=90゜,BD⊥AC于D,∠CBD=α,AB=3,BC=4.
(1)求sinα的值; 
(2)求AD的长.

查看答案和解析>>

同步练习册答案