精英家教网 > 初中数学 > 题目详情
如图,AB、BC、CD分别与⊙O切于E、F、G,且AB∥CD.连接OB、OC,延长CO交⊙O于点M,过点M作MN∥OB交CD于N.
(1)求证:MN是⊙O的切线;
(2)当0B=6cm,OC=8cm时,求⊙O的半径及MN的长.

【答案】分析:(1)求证:MN是⊙O的切线,就可以证明∠NMC=90°
(2)连接OF,则OF⊥BC,根据勾股定理就可以求出BC的长,然后根据△BOC的面积就可以求出⊙O的半径,根据△NMC∽△BOC就可以求出MN的长.
解答:(1)证明:∵AB、BC、CD分别与⊙O切于点E、F、G
∴∠OBC=∠ABC,∠DCB=2∠DCM(1分)
∵AB∥CD
∴∠ABC+∠DCB=180°
∴∠OBC+∠OCB=(∠ABC+∠DCB)=×180°=90°
∴∠BOC=180°-(∠OBC+∠OCB)=180°-90°=90°(2分)
∵MN∥OB
∴∠NMC=∠BOC=90°
即MN⊥MC 且MO是⊙O的半径
∴MN是⊙O的切线(4分)

(2)解:连接OF,则OF⊥BC(5分)
由(1)知,△BOC是直角三角形,
∴BC===10,
∵S△BOC=•OB•OC=•BC•OF
∴6×8=10×OF
∴0F=4.8cm
∴⊙O的半径为4.8cm(6分)
由(1)知,∠NCM=∠BCO,∠NMC=∠BOC=90°
∴△NMC∽△BOC(7分)
,即=
∴MN=9.6(cm).(8分)
点评:本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,AB,BC是⊙O的两条弦,AB垂直平分半径OD,∠ABC=75°,BC=4
2
cm,则OC的长为
 
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,AB,BC分别是⊙O的直径和弦,点D为
BC
上一点,弦DE交⊙O于点E,交AB于点F,交BC于点G,过点C的切线交ED的延长线于H,且HC=HG,连接BH,交⊙O于点M,连接MD,ME.
求证:
(1)DE⊥AB;
(2)∠HMD=∠MHE+∠MEH.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,AB,BC,CD分别与⊙O相切于E,F,G,且AB∥CD,BO=6cm,CO=8cm.求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB、BC、CD分别与⊙O相切于E、F、G,且AB∥CD,BO=6,CO=8.
(1)判断△OBC的形状,并证明你的结论;
(2)求BC的长;
(3)求⊙O的半径OF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB、BC、CD分别与⊙O切于E、F、G,且AB∥CD,连接OB、OC,延长CO交⊙O于点M,精英家教网过点M作MN∥OB交CD于N,OB=6cm,OC=8cm.
(1)求∠BOC的度数及⊙O的半径.
(2)请证明MN是⊙O的切线,并求MN的长.

查看答案和解析>>

同步练习册答案