精英家教网 > 初中数学 > 题目详情

如图①,将一张直角三角形纸片ABC折叠,使点A与点C重合,这时DE为折痕,△CBE为等腰三角形,再继续将纸片沿△CBE的对称轴EF折叠,这时得到了两个完全重合的矩形(其中一个是原三角形的内接矩形,另一个是拼合成的无缝隙、无重叠的矩形),我们称这样的两个矩形为“叠加矩形”.请完成下列问题:

1.如图②,正方形网格中的△ABC能折叠成“叠加矩形”吗?如能,请在图②中画出折痕;

2.如图③,在正方形网格中,以给定的BC为一边,画出一个斜△ABC,使其顶点A在格点上,且△ABC折成的“叠加矩形”为正方形;

3.如果一个三角形所折成的“叠加矩形” 为正方形,那么它必须满足的条件是  

 

 

1.如图②所示:

2.如图③所示:

3.由(2)可得,若一个三角形所折成的“叠加矩形”为正方形,

那么三角形的一边长与该边上的高相等的直角三角形或锐角三角形.

解析:

1.应先在三角形的格点中找一个矩形,折叠即可;

2.根据正方形的边长应等于底边及底边上高的一半可得所求三角形的底边与高相等;

3.由(2)可得相应结论

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

28、小丽剪了一些直角三角形纸片,她取出其中的几张进行了如下的操作:
操作一:如图1,将Rt△ABC沿某条直线折叠,使斜边的两个端点A与B重合,折痕为DE.
(1)如果AC=6cm,BC=8cm,试求△ACD的周长.
(2)如果∠CAD:∠BAD=4:7,求∠B的度数.
操作二:如图2,小丽拿出另一张Rt△ABC纸片,将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,已知两直角边AC=4cm,BC=8cm,你能求出CD的长吗?
操作三:如图3,小丽又拿出另一张Rt△ABC纸片,将纸片折叠,折痕CD⊥AB.你能证明:BC2+AD2=AC2+BD2吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

16、将一张正方形的纸片按如图所示的方式三次折叠,折叠后再按图所示沿折痕MN裁剪,则可得(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

小明剪了一些直角三角形纸片,他取出其中的几张进行了如下的操作:
操作一:如图1,将Rt△ABC沿某条直线折叠,使斜边的两个端点A与B重合,折痕为 DE.如果∠CAD:∠CDA=1:2,CD=1cm,试求AB的长.
操作二:如图2,小明拿出另一张Rt△ABC纸片,将其折叠,使直角边AC落在斜边AB上,且与AE重合,折痕为AD.已知两直角边AC=6cm,BC=8cm,请你求出CD的长.
操作三:如图3,小明又拿出另一张Rt△ABC纸片,将纸片折叠,折痕CD⊥AB于D.请你说明:BC2+AD2=AC2+BD2

查看答案和解析>>

科目:初中数学 来源:中考加速卷  数学 题型:044

如图,正方形表示一张纸片,根据要求,需通过多次分割,将正方形纸片分割成若干个直角三角形,操作过程如下:第一次分割,将正方形纸片分成4个全等的直角三角形;第二次分割,将上次得到的直角三角形中的一个再分成4个全等直角三角形;以后按第二次分割的做法进行下去.

(1)请你设计出两种符合题意的分割方案图(要求在图1、图2中分别画出每种方案的第一次和第二次的分割线,只要有一条分割线段不同,就视为一种不同方案,图3供操作、实验用).

(2)设正方形的边长为a,请你就其中一种方案通过操作和观察将第二、第三次分割后所得的最小直角三角形的面积S填入下表:

(3)在条件(2)下,请你猜想:分割所得的最小直角三角形的面积S与分割次数n有什么关系?用数学表达式表示出来.

查看答案和解析>>

科目:初中数学 来源:2013-2014学年福建省永春县九年级上学期期末检测数学试卷(解析版) 题型:选择题

如图,将一张等腰直角三角形纸片沿虚线剪成甲、乙、丙三块,其中甲、丙为直角梯形,乙为等腰直角三角形.根据图中标示的边长数据,比较甲、乙、丙的面积大小,下列判断正确的是( )

A.甲>乙>丙;?? B.乙>丙>甲;?? C.丙>乙>甲;?? D.丙>甲>乙.

 

查看答案和解析>>

同步练习册答案